Hardware Security in Nanometer CMOS

Prof. Wayne Burleson
Department of Electrical and Computer Engineering
University of Massachusetts Amherst
burleson@ecs.umass.edu
(visiting EPFL 2010-2011)
Objectives of this Talk

- Motivations for Hardware Security
 - In Nanometer CMOS (variations, noise, Moore’s Law, etc.)

- Some Exciting Applications with Societal Impact
 - Secure Bio-Sensor
 - Transportation Payments

- Security Primitives
 - True Random Number Generator (TRNG)
 - Physical Unclonable Function (PUF)
 - Ultra Wideband (UWB)

- Recent Attacks and Countermeasures
- How to Validate and Measure Secure Systems?
- Some Open Problems and Conclusions
Trusted & Reliable Embedded Networked Devices and Systems (TRENDS)

- **Projects:**
 - Architectures for Future RFID chips
 - Side-channel attack resistant design methods
 - Configurable hardware architectures
 - On-chip Monitoring for Attack Detection
 - Secure soft-processors
 - Power Depletion Attacks in Sensor Networks
 - Ultra-wideband Security
 - Integrated Payment Systems

- **Recent Funding**
 - NSF “Pay-as-you-Go”
 - NSF “UWB for Low-Power Security”
 - CISCO “Post-Quantum Crypto”
 - NSF “Smart Tags”
 - DARPA “Secure Sensor Networks”
 - Microsoft “Secure RFID”
 - NSF “Animated Spaces”
 - ARO “Network Vulnerability and Wireless Security”
 - ARO MURI “Ultra Wide Band”
 - NSF CAREER “Network Processors”
 - NSF CAREER “Supply Chain Management”

- **Participants**
 - W. Burleson (VLSI Systems)
 - W. Gong (Systems and Control)
 - R. Tessier (Embedded Systems)
 - T. Wolf (Network Processors)
 - A. Ganz (Networks)
 - K. Fu (CS, RFID, Applied Crypto)
 - D. Ganesan (CS, Sensor Networks)
 - A. Muriel (IE, Asset Management)
 - R. Jackson (RF, Analog Circuits)
 - D. Goeckel (Wireless)
 - J. Collura, (Transportation)
 - Industrial: Microsoft, IBM, RSA Labs, EMC, MITRE, CISCO, Altera, Intel, ThingMagic. Hitachi
 - Government: NIST, FTC, FDA
 - Academic
 - A. Lysyanskaya, Brown Univ.
 - M. Zarrillo, UMass Dartmouth
 - International:
 - C. Paar, A. Rupp, Germany
 - G. Gogniat, France

- **Educational Impact**
 - New courses in Cryptography, Security Engineering, Trustworthy Computing
 - Industrial workshops
rfid-cusp.org

Three principles of data security guide our research.

Planning ahead: Good security is built in, not bolted on. The Internet has taught a key lesson: It is less costly to anticipate threats and to secure systems from the start than to patch after the fact.

Open design: Public scrutiny usually breeds stronger systems than private finger-crossing. Openness has long been a cardinal rule of cryptography and a pillar of secure system design. Similarly, responsible disclosure of vulnerabilities holds the technology industry to high standards and brings vital education to the community.

Thinking holistically: Well conceived goals beget well conceived solutions. Thorough understanding of the uses and abuses of a system is the first step toward economical and effective security.

NEWS/EVENTS

RFIDSec Workshop
June 2011:
UMass Amherst will host the 2011 RFIDSec Workshop June 26-28, 2011. This event represents the first time that RFIDSec will be held in the United States.

WISP Summit
November 2009:
RFID CUSP researchers co-chair the WISP Summit at Intel Research on wirelessly powered sensor networks and computational RFID.

Archive >

BLOG
Crypto Implementations:
- Block and Stream Ciphers
- ECC
- Post-Quantum Crypto
- TRNG
- PUF
- UWB

Applications:
- Transportation
- Commerce
- Assistive Technologies
- Supply Chain
- Pharmaceutical
- Medical Devices

Threat Models:
- Side-channels:
 - Power
 - Electromagnetics
 - Fault Injection
 - Eavesdropping
 - Jamming/DoS
 - Power Depletion
 - Thermal Virus
 - Trojans

"Securing the Perimeter of the Internet"

"Interaction of Physical and Virtual Worlds"
Trends in VLSI Research

- Driving Applications
 - Microprocessors
 - DSP
 - Video
 - Wireless
 - Hand-sets
 - Smart Cards
 - Sensor Networks
 - RFID
 - Smart Dust
 - ...

- Design Challenges
 - Area
 - Performance
 - Complexity
 - Test/Yield
 - Power
 - Flexibility
 - Reliability
 - Process
 - Voltage
 - Temperature
 - Security/Privacy
Attacks on Embedded Systems (Gogniat, Bossuet)

Remote attacks
Worm, virus, Trojan, tracking, etc.

RAM

Remote attacks
Worm, virus, Trojan, tracking, etc.

RAM

Proximity-based
Passive Hardware attacks
Power or EM analysis

Reversible active proximity-based attacks
Fault injection

Irreversible hardware attacks
Tampering

Eavesdropping

RSA

AES

µP
turbo code

KEY
Some Motivating Applications

- **Secure Bio-sensors** (w/ S. Carrara, EPFL)
 - Low-cost, authenticated, controlled access
 - Solutions: NFC, EPC-C1-G2, PRESENT, PUF
 - Challenges: Low-energy, Compatibility,
 - Enhancements to other Sensor types

- **Transportation Payment Systems**
 (w/ J.P. Hubaux, EPFL, C. Paar, Bochum, A. Lysyanskaya, Brown,...)
 - Low-cost, privacy-preserving, secure
 - Solutions: E-Cash, Dynamic Pseudonyms, K-UWB, TRNG
 - Challenges: range, speed, reliability,
 trading off privacy for operator utility
 - Extensions to other Payment Systems
Doesn’t the mobile phone solve our problem?

Advantages
- Computational power (multi-core, Ghz, RISC, DSP, accelerators,...)
- Familiar interface
- Widely deployed
- Large battery
- Numerous communication interfaces (GSM, WiFi, Bluetooth, NFC, GPS,...)
- Already contains Trusted Platform Module (TPM), SIM and other robust security primitives.
- Reliable, compact, robust
- Trusted brands and service providers (and deep-pocketed...)

Disadvantages
- Complex, multi-function system (Swiss Army knife for security?)
 - Very hard to analyze & make security guarantees
- Lots to go wrong: battery, wearout, software bugs, insider threats, etc.
- Single point of failure, vulnerability: theft, loss,
Some of our recent work (2007-2011)

- Crypto Primitives
 - SRAM-based TRNG and Chip ID
 - Metastability-based TRNG (w/ Intel and TU Darmstadt)
 - Physical Unclonable Functions (PUF) in Sub-th CMOS (w/ Berkeley and TU Munich)

- Attacks
 - Leakage-based side-channel analysis
 - Process variation impacts on side-channel attacks (w/ UCL)
 - Hardware Trojans using side-channels (w/ Bochum, CRI)

- Alternative Countermeasures
 - On-chip sensors and surveillance (w/ SRC)
 - Ultra wide-band for low-power security (w/ RSA and Stanford)

- Validation:
 - Test chip in 45nm SOI (w/ IBM)
 - Secure RFID Sensing on FPGA (w/ Intel and Bochum)
Chip ID and Random Numbers from SRAM Power-Up State

Harvest process variation in SRAMs for chip identification
- Match: Hamming Distance match against known fingerprint identities
- Reliable ID using 64 bit fingerprints (> 19 bits in Hamming distance)

Harvest on-chip noise in SRAMs for true random number generation
- Min-entropy metric per 256 bytes
- Extraction: use low-cost PH universal hash function as a randomness extractor
- Pass NIST randomness tests

Meta-stable True Random Number Generator (TRNG)

- Meta-stable circuits allow very lightweight TRNG circuits for RFID, smart cards, sensor nodes...
- But process variations introduce TRNG bias.
- Circuit-level calibration techniques can partially remove bias.

But when should calibration occur? And by whom?

S.Srinivasan (Intel), 2.4GHz, 7mW All-Digital, PVT-Variation-Tolerant TRNG in 45nm CMOS, VLSI Circuits 2010
V.Suresh and W.Burleson, Entropy Extraction in Metastability-based TRNG, HOST 2010
Entropy variation with transistor mis-match

\[
\text{Mean} = \left(\sqrt{\frac{\beta_1}{2}} - \sqrt{\frac{\beta_2}{2}} \right) (\mu_{\text{noise}} + V_{gS} - V_t)
\]

\[
\text{Variance} = \sigma_{\text{noise}}^2 \left[\left(\sqrt{\frac{\beta_1}{2}} + \sqrt{\frac{\beta_2}{2}} \right) \right]
\]

- Self-calibration techniques improve bit entropy, but may introduce correlation between bits

Autocorrelation factor for sample space of 100,000 bits with lag 20,000
Self-calibration: the dangers of autonomous systems

- Complexity in the self-calibration mechanism
- Finite resources for statistical computations
- External influences on automaton (temp, EM)
- **Open Problem: Secure self-calibration**

V. Suresh, W. Burleson, “Hybrid Self-calibration for managing variation in TRNG”, VARI 2011
Algorithmic entropy extractors

1. XOR

2. von Neumann (1951)

<table>
<thead>
<tr>
<th>Input bit pairs (from TRNG)</th>
<th>Output from von Neumann Corrector</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>No output</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>No output</td>
</tr>
</tbody>
</table>

Raw bits from TRNG

Output of von Neumann Corrector

Attacks on TRNG: Reduce non-determinism

Practical example: Frequency injection attack on RO based TRNG in a real EMV card, reducing the key space from 4 billion (2^{32}) to 255 ($<2^5$)

Physical Unclonable Functions (PUFs)

- Authentication – Challenge Response protocol
- Secret key generation, Random functions, Key-less crypto
- Apps: Certified execution, Counterfeit protection, IP discovery
- Metrics: Security, Uniqueness, Reliability, Efficiency (SURE)

PUFs are vulnerable to machine learning attacks

- Arbiter PUF vulnerable with a few hundred CRPs.

- More complex PUFs still vulnerable with more CRPs...

- Open Problem: Secure PUFs that are hard to learn?
 - Role of noise not clear...

Sub-Vth PUF Design for Low Power and Security

- Sub-threshold circuits (Vdd < Vth):
 - Higher sensitivity to process variations = higher uniqueness
 - Low-power and secure applications: RFID
- Design metrics
 - Low power (sub-threshold)
 - Uniqueness (higher for reduced Vdd)
 - Reliability (Vdd and temperature common-mode)
 - Security (resist side-channel attacks and machine learning modeling attacks...)
- Implementation
 - 45nm SOI, 64 stage PUF, 418 gates, 47fJ/cycle
 - Chips functional, CRPs under analysis for security, uniqueness, reliability
 - 32nm test chip design underway
LDPA: Leakage-Based Differential Power Analysis

Differential power attacks can break cryptosystems by exploiting data-dependent dynamic power consumption

LDPA becomes a feasible side-channel attack

CMOS trends: data-dependent leakage power consumption becomes dominant in sub-90nm devices

Accumulative power curves generated by differential power analysis algorithm:
(Left) a global view of all key guessed curves;
(Right) enlarged view of leakage power region where the key can be extracted.

Correct key extracted!
Wrong keys converged

CMOS Process Variation Impacts on Power Side-channels

- Process variations impact both P_{dyn} and P_{leak}
- Define a metric: power-attack tolerance
 - Monte-Carlo simulation to determine PAT distribution
 - Both standard CMOS and DPA-resistant logic gates degrading PAT
 - Process variations reduce the average efforts of a DPA attack by 57%

- Mitigation: Transistor sizing optimization
 - Compensate for PAT uncertainty and increase the mean PAT
 - Make DPA attacks more difficult by 39%
 - 0.9% power / 1.5% area overhead

$$PAT = \frac{1}{SNR} = \frac{\mu(P)}{\sigma(P)}$$

Process variations increase the vulnerability of DPA-resistant logic! (although template attacks may be more difficult)

- **Sense Amplifier-Based Logic (SABL)**
 - Tolerates power attacks by power balancing circuit with 3-4x design overhead.
 - Ideally infinite PAT; but in reality, 10x larger than the PAT of equivalent CMOS gates.

- **Process variation impacts on SABL**
 - Results: 59-71% degradation probability
 - LPAT degrades even worse, as low as CMOS gates

Hardware Trojans

- *Hacker in your Hardware*, Scientific American, August 2010

- **Taxonomy of HW Trojans**
 - Time of insertion
 - Physical location
 - HW abstraction layer
 - Trigger Mechanism
 - Effects

- **Countermeasures**
 - Power fingerprints
 - Optical techniques
 - Memory gatekeeper
 - Secure system bus
 - Trusted Fabs (DARPA)

- **Embedded Systems Challenge (ESC)**
 - http://poly.edu/csw-embedded.
 - Insertion and Detection games

Side-Channel Watermarks: Smartcard and FPGA

- Turn around Trojan “problem” for constructive use.
- Modify Smartcard Software with Side-channel watermarks
- Modify FPGA designs with Side-channel watermarks
- Detect Watermarks using side-channel analysis
- DPA Workstation (DPAWS) from Cryptography Research Inc. has state-of-art setup for Power and modification for EM

Some of our recent work (2007-2011)

- **Crypto Primitives**
 - SRAM-based TRNG and Chip ID
 - Metastability-based TRNG (w/ Intel)
 - Physical Unclonable Functions (PUF) in Sub-th CMOS (w/ Berkeley)

- **Attacks**
 - Leakage-based side-channel analysis
 - Process variation impacts on side-channel attacks
 - Hardware Trojans using side-channels (w/ Bochum)

- **Alternative Countermeasures**
 - On-chip sensors and surveillance (w/ SRC)
 - Ultra wide-band for low-power security (w/ RSA, Stanford)

- **Validation:**
 - Test chip in 45nm SOI (w/ IBM)
 - Secure RFID Sensing on FPGA (w/ Intel and Bochum)
Networked Sensors for:
- power
- temperature
- errors
- delay margins
- control flow
- activity counters

Detection of:
- thermal runaway
- soft-errors
- wearout
- *Trojan*
- *intrusion*

MEP = Monitor Executive Processor

Lightweight and Robust PVT Sensing Circuits for Multi-Core Systems

[Image: Diagram of lightweight and robust PVT sensing circuits]

- **Low Latency Droop Detector**
- **High Sensitivity & Robust Thermal Sensor**
- **High Sensitivity & VT-Invariant Process Monitor**

Mitigation of Process-Effects:
1. Thick-oxide, long-channel devices used in NMOS stack N4-N7
2. Stacked devices exhibit lesser process-sensitivity

Current flow due to reverse DIBL effect results in a higher voltage ‘VA’ for higher ‘Vt’ of Ns and thus, causes V(out) to decrease as Vt is reduced

Open Loop: TRACK/HOLD=1
- NMOS stack N4-N7 operates in Sub-Threshold
- VOUT higher for lower temperature
Post Layout Simulations in 45nm IBM-SOI

Comparison between simulated supply noise and droop detector output

Sub-Thermal sensor output
Specs: 12.4μ² 133.4μW 4.56 mV/°C Resolution
Specs: 45.6μ² 13.4μW 7.1V/V Resolution

Sensitivity of NMOS Vth tracking circuit
Motivation: Standard crypto algorithms (AES, etc.) can be too power/energy consuming for RFID tags, especially passive tags.

Idea: Can we save power by pushing some part of the cryptography to the Physical Layer? Employ impulse-radio ultra-wideband to “hide” the signal in the time-domain.

- Desired receiver (knows the key) can aggregate energy to perform channel estimation (and eventually decode). (D. Goeckel)
- Eavesdropper suffers from (asymptotically infinite,) noncoherent combining loss.

Questions:

1. Can we formulate a “hard” problem for the eavesdropper to solve? (Ari Juels – RSA Labs, Dan Boneh – Stanford)
3. Is the scheme more side-channel tolerant? (W. Burleson and C. Paar).
Idea: Use UWB to achieve physical layer security

Reader (PDA, Phone, PC) + UWB hw

UWB transmitter

Eavesdropper

Physical Layer Security
Determine the time delay between the reference and data pulses in the initial N_f/m frames

\[\tau_k = D + c_{0, |k/m|} T_p \]

Determine the time delay between the reference and data pulses in the final N_f/m frames

\[T_s = N_f T_f \]

Lightweight TRNG needed to confuse adversary.

- Random offsets employed to prevent the adversary from detecting the transmitted signal coherently
- Generated by a very fast and light True Random Number Generator (TRNG)
- Intended receiver knows key but does not need to know TRNGs

Experiment with K-UWB schemes to optimize BER metrics

Goal (big picture):
Position UWB pulses with a key (K-UWB) so that receiver has advantage over eavesdropping adversary

Choices:
Coherent vs. Transmitted Reference
Framed vs. Frameless

Information-theoretic security
in contrast to Computation-theoretic security

Additional Benefits of UWB

- Harder to detect and jam (timedomain.com)
- Harder to physically fingerprint (in contrast to Danev et al (ETHZ), Usenix 2009)
- Can be implemented as backscatter in a purely passive tag by modulating reflected pulse train (Berkeley Wireless Research Center)
Physical layer identification of wireless devices?

- Signal processing and pattern recognition methods allow very accurate identification of wireless devices from analog radio behavior.
- Power-up transient and other discriminants.
- We conjecture that IR-UWB reduces these vulnerabilities.

Figure 6: Modulation shape of the responses of 4 different classes (C1), (C1-ID2), (C2), (JCP): a) first run b) second run. In each run, the sample transponders were freshly placed in the fingerprinting setup. These plots show the stability of the collected modulation-shape features across different runs.
Reflective Impulse Radios (RIR)

- Combining UWB and RFID.
How to validate Security Systems

- Analysis (mathematics, statistics, formal methods)
- Simulation
 - Low-level (circuit design, statistical simulations)
 - Higher-levels (protocols, machine learning, threat models)
- Emulation
 - FPGAs (near real-time hardware performance, protocol compliance)
 - Microcontrollers (real-time software, code-size constraints, etc.)
- Prototypes
 - Realistic power consumption and timing
 - Realistic RF components and performance
- Pilot Deployment: realistic scenarios
- Large-scale Deployment: human factors, scalability, large data, long time
Secure Platform for Bio-sensing

- **Applications**
 - Disposable Diagnostic
 - Low-cost, infectious disease detection (malaria, HIV, dengue, cholera)
 - Implantable Device
 - Sub-cutaneous multi-function sensor (drugs, antibodies, DNA, brain waves)
 - Pacemaker, Drug-delivery

- **Security Technology**
 - NFC Cell Phone
 - EPC Class 1, Gen 2 protocol
 - PRESENT Block Cipher (Encryption, Signing, Authentication)
 - PUF for low-cost ID and CRP

Other NFC-enabled sensor-tag apps

From Gentag.com

- Temperature
- Radiation
- Health
- Anti-counterfeit...

Sample specifications for radiation:
- Single Use and Disposable
- Pre-Calibrated Sensor with Unique ID
- Maximum Measurable Dose: 10,000 rad
- Passive or Battery-Assisted Logger

For technical information please contact GENTAG:
info@gentag.com
Prototyping RFID with the UMass Moo

Overview
Moo is a passive Computational RFID that harvests RFID reader energy from the UHF band, communicates with an RFID reader, and processes data from its onboard temperature sensor and accelerometer. Its function can be extended with its general-purpose I/Os, serial buses, and 12-bit ADC/DAC ports. The Moo provides a RFID-scale, fully programmable, batteryless sensing platform. The programs executes on an MSP430 microcontroller. The Moo 1.0 derives from the open source Intel DL WISP 4.1.

Documents
An Introduction to the Architecture of Moo 1.0 (PDF, PPT).

Photos
(a) Moo with antenna removed.
(b) Moo 1.0 + USB Programmer (zoom).
Test-Chip in 45nm SOI, currently under test

- Ghz Droop Detector - Jinwook Jang (PhD)
- Process-Aware Sub-th Thermal Sensing Circuits - Basab Datta (PhD)
- DLL-based Phase Encoder - Ibis Benito (PhD)
- Sub-th PUF - Sudheendra Srivaths (MS)

10-Metal Layer Process
Silicon-on-Insulator, High-k, metal gate
Die-dimensions: 9mm²
Land-count: 152
MOSIS foundry brokerage
Funded by NSF and SRC grants
Applications

- *Transportation (anti-fraud, location privacy)*
- Commerce (anti-fraud, privacy)
- Supply Chain (anti-counterfeit, eavesdropping)
- Pharmaceutical (anti-counterfeit)
- *Medical Devices (authentication, confidentiality, privacy)*
- Assistive Technologies (safety, privacy)
- Education (Learner modeling)
- Entertainment (DRM)
- ...

Q: How to Finance Crumbling Transportation Infrastructure?
A: User Pay-as-you-Go Fees with Electronic Payment Systems..., but:

• Payment smart cards being deployed without adequate security or privacy considerations (January 2008 breaks of Translink and Mifare)

• Open road tolling being deployed in Texas, New Jersey and Florida with security and privacy vulnerabilities

• How to gather user behavior for system optimization without compromising privacy? (w/ Brown, TUDarmstadt)

• Partial anonymization using e-cash schemes needs lightweight elliptic curve engine (w/ Bochum, Leuven)

• First UMass Workshop on Integrated Payment Systems for Transportation, Boston, Feb. 2009, 40 participants from industry, government and academics

• Working with MBTA, Mass Highways, E-Zpass, RSA, MIT, Volpe Center, to assess vulnerabilities and develop both short-term and long-term solutions
Privacy-preserving payments with “open traveller discount” option

- **E-cash plus dynamic pseudonyms** allow users to opt-in to possible tracking and receive a discount on their fare. Other transportation payment solutions require users to trust infrastructure, black-box, obfuscation methods, etc. to varying degrees to ensure their privacy.

- **Users can choose to play a game or not.** If they play the game, they can trade off privacy for lower fares. Similarly, the transportation operators can play by offering reasonable discounts in order to incentivize users to give up some privacy in order to give up some information to allow operators to optimize their services. They can gain additional revenue by targeting advertising.

- **E-cash needs to become a culturally trusted anonymous payment** (as regular cash is today). Pseudonyms will be a bit like Cookies where most users will opt-in and accept them for the convenience and reduced fares that they allow, but some users (e.g. Stallman, etc.) can stay anonymous. Various levels of privacy vs. convenience/economy can be provided. These levels may vary depending on culture, law and education of users.

- **Location-Privacy is hard for the general population to understand** since the vulnerability is defined by ever-improving tracking algorithms. Some users may wish to learn about these vulnerabilities, calculate risks and play the game, but others should be able to opt out and rest assured that their privacy is not being compromised. (Somewhat analogous to playing the stock market vs. staying in a less risky investment with one's savings).

Collaborations with A. Lysyanskaya, Brown University, and J.-P. Hubaux, EPFL
Many medical devices rely on wireless connectivity for remote monitoring, remote therapies and software updates.

Recent research identified several attacks and defenses for implantable cardiac defibrillators:
- Wireless communications were *unencrypted and unauthenticated*
- Power depletion attacks
- Extensions to numerous other emerging implantable devices

Heart-Device Hacking Risks Seen

Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses.

D. Halperin, T. Heydt-Benjamin, B. Ransford, S. Clark, B. Defend, W. Morgan, K. Fu, T. Kohno, and W. Maisel.

Recent work on Security in Insulin Pumps

OMDRL (Open Medical Device Research Library)

- A collection of *used* medical devices for use in security research
- Overcomes reluctance of device manufacturers to offer devices for research.
- Includes pacemakers, glucose sensors, insulin pumps, etc.
- More information available from kevinfu@cs.umass.edu
Recent Event!

Speakers:
- Kevin Fu, UMass Amherst, USA
- Srdjan Capkun, ETHZ, CH
- Jos Huiskens, IMEC, NL
- Ahmad Sadeghi, Darmstadt, DE
- Ian Brown, Oxford, GB
- F. Valgimigli, Metarini, IT
- A. Guiseppi-Elie, Clemson, USA
- Q. Tan, Shanghai, China

Panel: How real and urgent are the security/privacy threats for IMDs? Which IMDs?

(just following IEEE ISMICT in nearby Montreux, Switzerland, www.ismict2011.org)

http://si.epfl.ch/SPIMD
Recent Event!

Special Session: Hardware Security in VLSI

Session Organizers:
Wayne Burleson, U. Massachusetts, USA
Yusuf Leblebici, EPFL, Switzerland

Speakers:

1. Farinaz Koushanfar, Rice University, USA
"Protecting ICs against piracy"

2. Ingrid Verbauwehde, KU Leuven, Belgium
"Physically Unclonable Functions: Benefit from Process Variations"

3. Christof Paar, Ruhr U, Bochum, Germany

http://glsvlsi.org
Conclusions

- Hardware security is the foundation of higher level secure systems.
- Underlying CMOS fabric is changing, introducing new vulnerabilities (variations, noise, leakage). More changes with emerging nano-technologies.
- Variations and noise can help or hurt security. Be aware of them and think statistically.
- There’s “plenty of room at the bottom” (e.g. PUFs, TRNG, UWB).
- RFID, Smart sensors, “Smart dust” have many hardware security challenges due to resource constraints.
- Higher- and lower-level defenses can augment cryptography.
- Validation of cryptosystems is challenging. Security is hard to measure.
- Security is hard! Cross-disciplinary security research spans Circuits, Architecture, Communications, Crypto, Manufacturing, Economics, Psychology and Application Domains (e.g. Transportation, Medical Device, RFID, etc.)
Hardware Security Challenges in Next Generation RFID

- Improved radio frequency communication range and power delivery efficiency
- Power efficiency (currently 20-30uW for digital)
- Energy storage (batteries and super-capacitors) to allow reader-less operation
- Data storage (currently 1-4K bits, moving to 10-100Kb, both volatile and non-volatile)
- Security services
 - Authentication (Hash functions, Device-tied functions)
 - Encryption (Private, Public)
 - Consensual reading
 - Intrusion detection
 - Side-Channel attacks (EM, power, fault-injection, glitch, timing)

- New HW-related features in Next Generation tags
 - Data Storage
 - Shared among multiple untrusted parties
 - Logging (e.g. for intrusion detection)
 - Sensors
 - Location
 - Temperature, Bacteria, Chemical
 - Off-line Computation
 - Time-aware (real-timers)
 - Reliability

Intel WISP

Source: Auburn Univ.

Source: KSW-microtech, Dresden