Light Boat Angle Regulator

Our Objectives

- **Speed.** Our mechanism had to be as light as possible
- **Ease of access.** On land and on water
- **Robustness.** Resist a 150N force
- **Simplicity.** Lowest possible number of parts in case we need replacement.
- **Size.** Space was limited on the deck
- **Range of configurations.** Angle variation of ±3 degrees

Design

The mechanism is similar to those found on car jacks. We added four more rods in order to stabilize and remove rotation of our system.

We did a first version where all the parts where in INOX and with a M4 screw. When one of the pivots got jammed on the screw we identified two possible reasons:
- The poor contact between two INOX parts (screw and pivot)
- The buckling of the screw

We corrected it by having M5 screws on the new version and brass pivots

Angle Reader

In order to read the angle of inclination of the centerboard we came up with a system made of a detachable Dibond piece and permanently fixed supports.

Structural Analysis

- **Von Mises constraints**
- **Displacement**

With a 150 N force, the maximum constraint is 3MPa and the biggest displacement is 6 μm

Production

- **CNC:** Wedges and attaches to the boat cut into POM along with the angle reader.
- **ATME:** first prototype’s screws and guiding made out of INOX that broke because of a too small screw’s diameter and inappropriate Inox/Inox dynamic contact.
- **ATPR:** finals parts of our mechanism along with the connecting rods cut out by laser.
- **3D Print:** Support of the angle reader
- **Carbon:** Other secondary pieces were cut out in carbon

Thanks to the whole Hydrocontest team, LMAP and especially to the ATPR laboratory for their help throughout the project.