

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

"Injection System for Soft Pneumatic Actuator Fabrication"

Reconfigurable Robotics Laboratory

Marco Salerno (PhD)

Swiss National Centre of Competence in Research

Soft Pneumatic Actuators

Fabrication process of SPAs. The left column corresponds to the fabrication of linear SPAs while the right column illustrates the process for bending SPAs. (A) 3-D printed mold. (B) the molded silicone-rubber structure. (C) Two identical bodies shown in (B) are bonded together. (D) The fabricated linear SPA with an air tube. (E) Inflated linear SPA. (F) 3-D printed mold. (G) liquid silicone-rubber is poured into the mold and cured. (H) The molded silicone-rubber structure. (I) the strain-constraining layer, which is a thin fabric coated with siliconerubber. (J) The final bending SPA produced by bonding (H) and (I). (K) The actuated

Advantages:

-compliance in human robot interface (inherently safe)

-"embedded intelligence" automatic adaptable to the environment

bending SPA.

Crawler robot

Swiss National Centre of Competence in Research

Soft Pneumatic Actuators for Legged Locomotion

Juan Manuel Florez PhD, Benjamin, Shih, Yixin Bai, and Prof. Jamie Paik

> Reconfigurable Robotics Lab (RRL) Department of Mechanical Engineering, Swiss Federal Institute of Technology (EPFL).

Soft Wearable Exoskeleton

Jamie Paik, Grégoire Courtine, Silvestro Micera Postdoc: Juan Manuel Florez (former postdoc: Yun Seong Song) PhDs: Edurado Martin Moreau, Sophie Wurtz

Motivation

Providing Appropriate Sensory Inputs

Two main goals:

- Automatic assistance to training with controlled force.
- Transparent and reversible structure to respect gait intention of the subject

Figure 1. Top: Spinalized rat on a treadmill shown with assistance from human researcher. Middle: Joints and their range of motion during a typical overground gait. The travel of the knee joint position, D, is less than 15 mm. Bottom: Gait cycle and the timings of assistance given by human researchers.

Fabrication and Characterization

Current Design of the actuator

Parameter	Performance	
	L=	L=
	45 mm	63 mm
Blocked Force	> 2.1 N	> 0.8 N
Passive stiffness	22 N/m	9 N/m
Range of motion	20 mm	35 mm
Speed of actuation	> 5Hz	> 5Hz

Convex actuator (option)

Overall System

Motion Capture System

Experimental Videos

Pressure=32kPa, Freq= 4Hz

Pressure=35kPa, Freq=1Hz

King's College London Stifflop surgical robot

https://www.youtube.com/watch?v=iw5FTrqN2Ro

https://www.youtube.com/watch?v=e7NsBwl9LYl&feature=youtu.be&a

Research project (part 1/3)

Evaluate and design solutions for an **injection system** for SPA

Project steps:

-Conceptual ideas -Design -Producing drawings -Manufacturing (workshop)

Advantages:

-decrease the air inclusion
-increase reliability
-increase repeatability
-decrease manufacturing time
-adaptable to different silicone viscosities

Research project (part 2/3)

Investigate Lost-wax casting (for chambers manufacturing)

Methodology:

-by chemical or thermal removal of the lost wax mould

Advantages:

-obtaining an actuator made of a single part (no need of connecting different parts)

Research project (part 3/3)

Contacts RRL

Jamie Paik

Anouk Hein (secretariat) anouk.hein@epfl.ch

Marco Salerno <u>marco.salerno@epfl.ch</u>

Juan Manuel Florez Marin juan.florezmarin@epfl.ch