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CONTEXT
The global yearly irradiance on land being 36’000 TW, the solar energy has the biggest potential for covering the current yearly global energy demand of 17 TW.
Photo-electrochemical water splitting cells can convert this solar energy into hydrogen, which can be directly used in a fuel cell in order to co-generate electricity
and heat. The present project estimates the technical and economic feasibility of using semiconductor-based photo-electrochemical (PEC) water splitting devices
in conjunction with proton exchange fuel cells (PEMFC) for providing the energy services of a small scale, individual home. Two system types are investigated,
Kfocusing on either system efficiency (Design 1) or cheap and earth-abundant component choices (Design 2). )
(" N [ )
OveraLL Prant DEesgy PEC DESIGNS AND SIMULATIONS
+” Schematic of the PEMFC > , , , , ,
/ it ole 1 O The electrolysis of water is conducted in two main reactions as shown below :
g o, S
: = _—Hz()l _
I - H, <— 2H* + 2(¢e) hv
: H,0 ! [ ~— Overall reaction and energetics :
e e e ——m e ——— - == - ! I HER Catalyst 4 H.0 - 10, +H
,’ PEC Solar Irradiation N : ; : Outlet Photovoltaic celf\ \h: 2 272 2
3.42 [kwh/m2
: | : : : OER Catalyst E(())x = —123V (OER)
: |1 92, T o _
! Deionised H20 ; \(-, o I H+ 120, =<— H.O + 2(h™) rea = 0.00V (HER)
| = _ ¢ h,\ 1 :IL ae / 2 2
| _ _Proton Exchange Membrane _ ~ I % AG = +237.2 [K]/mol]
: Water Outlet Inlet
\\ Pump
T _/: T:I_(;;T[_ZZ_;/_C_I; _________________ \ 0 Design 1: Tandem GalnP,/GaAs photovoltaic cell that lies on a GaAs substrate,
' p—e=> ) | coated with two platinum catalysts that drives the HER and OER.
|
| Water Valve  Cold Water I 140
: Cold C l: @
e e Elaciciy For = | Ex. Cur. Density : J, = 5.21- 10715 [4/m?]
| o : g 100 Short Current Density : g = 134 [A/m?]
I : s
I = | 2 sof Correction factor : n = 2.375
| 7]
' / ) B 6 Catalysts :
N _ _ _HotWaterTap -, = —
- J § 40 | Tafel Slope : bptaer = 0.03 [V/dec]
e A 5 th,OER = 0.12 [V/deC]
PEM FUEL CELL 20 - —Photoabso.rbcr 5
?gl;grt;ct)ilgzl;oint EX CUI DenSIt . ]Pt:HER =1 [A/m ]
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* blue curves expresses the photocurrent density by the diode equation :
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Coverage ratio of thermal sanitary water energy — [Tth,deSllgnl - ;E%Z (;) e The crossing of the red and the blue curve gives us the operating point, from
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CONCLUSIONS
1 Based on our calculations, it is possible to cover the energy consumption per year for electricity and sanitary water heating of a Swiss household with the Design 1, whereas the
Design 2 only covers ~70% off the mentioned consumptions.
 In order to be cost competitive with more traditional energy resources, the hydrogen should be produced at a price between 2.00 [CHF /kg] and 4.00 [CHF /kg|'. The main
drawbacks are the short life time of the PEC cells (10 years), and their still low efficiencies. Moreover, regions with more solar irradiance would produce more hydrogen.

- J

1 Blaise A. Pinaud et al. , Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry, Energy Environ. Sci., 2013, 6, 1983-2002

J




