# Utilisation de l'imprimante TAZ 4 Optiprint

# Marche à suivre pour débutant



# Choix du logiciel

|                        | $\mathbf{Cura}$ | Slic3r    |   |
|------------------------|-----------------|-----------|---|
| Facilité d'utilisation | ++              | +         |   |
| Double extrudeur       | +               | ++        |   |
| Options disponibles    | +               | ++        |   |
| NinjaFlex              | +               | ++        |   |
| $\mathbf{C}_{1}$       | ura Pr          | onterface | Ņ |
| Double extrudeur       | -               | +         |   |
| Options disponibles    | +               | ++        |   |
|                        |                 |           |   |

# Profils

|                         | Dual | Fine | Medium | Fast |
|-------------------------|------|------|--------|------|
| Vitesse d'impression    | +    | ++   | +++    | ++++ |
| Qualité de l'impression | ++   | +++  | ++     | +    |
| Ponts et dévers         | ++   | +    | +++    | ++   |
| Impression ABS          | +    | +    | +      | +    |
| Impression NinjaFlex    | +    | _    | +      | -    |
| Impression bi-matériaux | +    | _    | _      | -    |

## Notes

— Choisir *Cura* pour une utilisation simple

— Choisir le profil *medium* en cas de doute

— Choisir le PLA pour les pièces de grandes dimensions



3mm

3mm 2mm

2mmColonnes  $(\phi_{min})$ \*Les angles des dévers sont mesurés depuis la verticale





# Paramètres avancés avec *Slic3r*

. LAYERS AND PERIMETERS

- Layer height permet de définir l'épaisseur de chaque couche imprimée. Ce paramètre ne doit pas être directement modifié. Des profils optimisés ont été créés pour des résolutions de très fine à grossière. Une diminution de l'épaisseur de couche permet une meilleure résolution esthétique mais demande un temps d'impression plus long. L'épaisseur de couche influence aussi la résistance de la pièce.
- First layer height définit l'épaisseur de la première couche d'impression. Selon les caractéristiques thermiques du matériau imprimé ou selon la difficulté d'adhérence de la première couche au lit d'impression, il peut être indispensable d'augmenter de peu ce paramètre.
- **Perimeters** détermine le nombre de « murs » constituant la face extérieure de la pièce. Sauf exception, il est recommandé d'imprimer des pièces avec un minimum de deux périmètres.
- **Solid layer** détermine le nombre de couches remplies à 100% à la base et au sommmet de la pièce. Une base remplie à 100% sur plusieurs couches permettra une meilleure résistance lors du décollage de la pièce. Un remplissage à 100% au sommet de la pièce améliore aussi la finition et la résistance.

2. Infill

- Fill density règle le remplissage global de la pièce. Le remplissage a un impact sur la masse de la pièce, le temps d'impression et la résistance de la pièce. Dans la plupart des cas, un remplissage de 100% n'est pas indispensable. Pour une utilisation conventionnelle, un remplissage de 20% est suffisant.
- Fill pattern permet de choisir le mode de remplissage du volume de la pièce. Le logiciel SLIC3R possède une très grande variété de schémas de remplissage. Les motifs que nous conseillons d'utiliser pour le meilleur rapport entre les propriétés mécaniques et le temps d'impression sont : rectilinear, linear et honeycomb. Le premier assure un bon contact entre le remplissage et les périmètres, le deuxième une grande rapidité. *Honeycomb* est idéal pour une pièce comportant des trous perpendiculaires aux couches d'impression car ceux-ci sont mieux entourés qu'avec des remplissages composés de segments de droite.

#### 3. Skirt and brim

- **Skirt** permet de s'assurer que la fonte du plastique soit bien amorcée lorsque l'extrudeur arrive sur la pièce.
- Brim width est utilisé pour ajouter un plus grand nombre de périmètres lors de l'impression de la première couche. La génération d'un brim permet une meilleure adhérence de la pièce au lit. L'utilisation d'un *brim* est vivement recommandée lors de l'impression de pièces hautes possédant une faible surface de contact avec le lit. En général, plus la pièce est haute, plus les périmètres de brim doivent être nombreux. Le *brim* doit évidemment être retiré de la pièce une fois l'impression terminée.

#### 4. Support material

Generate support materials génère automatiquement une structure permettant d'imprimer correctement une pièce possédant de grands surplombs ou des ponts. Cette structure facilement détachable après l'impression empêche l'effondrement de la pièce.

# Dépannage

#### Pronterface/Cura ne se connecte pas à l'imprimante

# La pièce n'adhère pas au lit d'impression

# Le filament ne s'extrude pas

sable.

### Les coins de la pièce se soulèvent

# Pièce fissurée

Gradient de température dans la pièce trop important : protégez la pièce des courants d'air afin de ralentir sa vitesse de refroidissement. Un *skirt* de la hauteur de la pièce peut être configuré à cet effet avec l'option Skirt height se trouvant dans la catégorie Skirt and brim de l'onglet Print settings de Slic3r.

#### Pièce déformée

Accumulation de chaleur au sein de la pièce trop importante : diminuez la température du lit chauffant sous l'onglet Filament settings de Slic3r. Il est aussi possible d'augmenter directement la température avec les contrôles de l'imprimante en se rendant dans Control-Temperature et en modifiant la valeur Bed.

Pronterface et Cura sont ouverts simultanément : fermez-en un.

Le port sélectionné n'est pas le bon : sélectionnez un autre port dans le menu déroulant en haut à gauche de l'interface de *Pronterface*. Cliquez ensuite sur *connect*.

La *fréquence de transmission* est fausse : modifiez la valeur du chiffre présent en haut à gauche de *Pronteface* et réglez-la sur 11520 Bd.

Le plateau d'impression n'est pas propre : nettoyez-le à l'acétone et pour l'ABS et le NinjaFlex, appliquez du *jus d'ABS*.

La surface de la pièce est petite : ajoutez du Brim en augmentant la valeur de Brim width qui se trouve dans la catégorie Skirt and brim de l'onglet Print settings.

La première couche d'impression est trop grande et la buse n'écrase pas assez le filament sur le plateau : réglez la butée de fin de course de l'axe Z plus bas ou augmentez la valeur de l'option First layer height se trouvant dans la catégorie Layers and perimeters de l'onglet *Print settings*. Réciproquement, opérez de manière inverse si la première couche d'impression est trop petite et la buse écrase trop le filament sur le plateau

Le plateau n'est pas assez chaud : augmentez la température du lit d'impression - Bed : First layer. Il est aussi possible d'augmenter directement la température avec le contrôle de l'imprimante en modifiant la valeur dans Control-Temperature-Bed.

Le lit n'est pas à niveau : référez-vous au manuel d'utilisation.

L'extrudeur a probablement « patiné » sur le filament, problème récurrent du *PLA* : chauffez la buse à la température d'impression du matériau, sortez le filament, coupez la section entamée et remettez-le en place en serrant suffisamment les molettes de serrage. Si le problème persiste, la buse est vraisemblablement bouchée, référez-le au respon-

#### L'impression de la pièce s'arrête avant la fin

Slic3r n'a pas fini d'exporter le Gcode : attendre que le Gcode soit complètement exporté avant de lancer l'impression.

Gradient de température dans la pièce trop important : ajouter un brim assez épais à votre modèle afin de conserver au mieux la température au sein de la pièce.

Objet trop éloigné du centre du lit d'impression : déplacez le modèle dans l'écran principal de Slic3r ou Cura.