EPFL – Internships
Microengineering and Robotics

- General context
- Administrative procedures
- Statistics
The internship: Excellent Opportunity !!!

- **Students**
 - A Great incentive to ask oneself the right questions!
 - Familiarize with working life
 - Immerse into Industry practice
 - Future Hiring opportunity

- **Companies**
 - Benefit from highly qualified students
 - A new insight on current issues, innovate!
 - Evaluate futur employees

- **EPFL**
 - A direct link to industry
 - A new platform to start collaborations on the research level
 - Feedback from industry to improve the education of our students
Sustainable Internships

Sustainable internships extend EPFL’s sustainability strategy to its partnership with companies. This program meets a growing demand from our master students.

Sustainability categories
Companies interested in receiving the label must explain how the main purpose of the technology (product, process, service) developed during the internship has a direct impact on sustainability.

The criteria are based on the United Nations’ Sustainable Development Goals (SDG). EPFL’s Tech4Impact unit is in charge of evaluating the proposals and attributing the sustainability label.
Sustainable Internships

How to identify them?
Company submissions are listed on the internship portal once validated by each section. Internships with a sustainability label will be identifiable with the following logo:
Sustainable Internships

Evaluation report
The evaluation process of the internship is similar to a regular internship but the student is asked to write a half-page report to comment if the sustainability goals have been reached. This report does not influence the validation of the internship for the master curriculum.

Promote sustainable internship opportunities!
Students are encouraged to identify sustainable internship opportunities within companies that meet the criteria listed above. The proposal of the internship subject is made by the company through the EPFL internship portal.
STI Internship Coordination

CDM
Management of technology

SV
Lifesciences

ENAC
Architecture

STI
Engineering

SB
Basic Sciences

I&C
Informatics et Communication

CDH
College of Humanities

Microengineering + Robotics
151 Ma1 students
187 Ma3 students

Material Sciences
35 Ma1 students
55 Ma3 students

Mechanical Engineering
135 Ma1 students
148 Ma3 students

Electrical Engineering + Energy Science and technology
98 Ma1 students
64 Ma3 students
The Internship in industry is a mandatory step of the Master degree

- Possible formats to validate this obligation

Models:

- **STAP:** Detached internship but credited with the master’s project
- **PDME:** Master project in industry

<table>
<thead>
<tr>
<th>Field</th>
<th>Models</th>
<th>Duration</th>
<th>Periods</th>
<th>Contact information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical and electronics engineering</td>
<td>STAP, SCS (30 credits), PDME</td>
<td>Min. 8 weeks, 4-6 months, 25 weeks</td>
<td>After bachelor, after MA2 or MA3, After MA2, During the master project</td>
<td>Web Site EL</td>
</tr>
<tr>
<td>Energy Science and Technology</td>
<td>STAP, PDME</td>
<td>Min. 8 weeks, 25 weeks</td>
<td>After bachelor, after MA2 or MA3, During the master project</td>
<td>Web Site GM</td>
</tr>
<tr>
<td>Materials science and engineering</td>
<td>STAP, PDME</td>
<td>Min. 8 weeks, 25 weeks</td>
<td>After bachelor, after MA2 or MA3, During the master project</td>
<td>Web Site MX</td>
</tr>
<tr>
<td>Mechanical engineering</td>
<td>STAP, PDME</td>
<td>Min. 8 weeks, 25 weeks</td>
<td>After bachelor, after MA2 or MA3, During the master project</td>
<td>Web Site GM</td>
</tr>
<tr>
<td>Materials science and engineering</td>
<td>STAP, PDME</td>
<td>Min. 8 weeks, 25 weeks</td>
<td>After bachelor, after MA2 or MA3, During the master project</td>
<td>Web Site MX</td>
</tr>
<tr>
<td>Microengineering and robotics</td>
<td>STAP, PDME</td>
<td>Min. 8 weeks, 25 weeks</td>
<td>After bachelor, after MA2 or MA3, During the Master project</td>
<td>Web Site MT</td>
</tr>
</tbody>
</table>
Mandatory Internship or Master Project in Industry

- **Internship**
 - Minimum duration of 2 month, up to 6 months
 - Immersion into industry
 - Familiarize with company processes
 - Acquire specific competences
 - Apply transversal skills
 - Evaluation report by student and industry supervisor

- **Master project in industry**
 - A research project in the company
 - Student applies the competences acquired during his master
 - Supervised by a Professor from his section
 - Written report and oral defense
 - Monthly feedback to Professor
 - 25 week duration (+1 week vacation)
When to place your internship / Master thesis?

- **Summer**: Master cycle 60 credits
- **Fall**: Minor/spec 30 credits
- **Spring**: Internship 8 weeks
- **Summer**: PDM in academia 17 weeks, 30 credits
- **Fall**: PDM in academia 17 weeks, 30 credits
- **Spring**: Master project in Industry 25 weeks
- **Summer**: Internship 6 months
- **Fall**: Minor/spec 30 credits
- **Spring**: Internship 8 weeks
- **Summer**: PDM in academia 17 weeks, 30 credits
- **Fall**: Master project in Industry 25 weeks

PDM in academia in foreign Universities: 25 weeks
When to place your internship / Master thesis?

- **Summer**: Internship 8 weeks
 - Master cycle: 60 credits

- **Fall**: Minor/spec: 30 credits
 - PDM in academia: 17 weeks
 - 30 credits

- **Spring**: Internship 8 weeks
 - Master cycle: 60 credits

- **Fall**: Minor/spec: 30 credits
 - PDM in academia: 17 weeks
 - 30 credits
 - PDM in academia in foreign Universities: 25 weeks

- **Summer**: Master project in Industry: 25 weeks
 - 30 credits
When to place your internship / Master thesis?

- **Master cycle**: 60 credits
- **Internship**: 6 months
- **Minor/spec**: 30 credits
- **PDM in academia in foreign Universities**: 25 weeks
When to place your internship / Master thesis?

- **Summer**: Master cycle (60 credits)
- **Fall**: Minor/specialization (30 credits)
- **Spring**: Internship (6 months)
- **Summer**: PDM in academia (17 weeks, 30 credits)

PDM in academia in foreign Universities: 25 weeks
When to place your internship / Master thesis?

- **Summer**: Master cycle (60 credits)
- **Fall**: Minor/spec (30 credits)
- **Spring**: Internship (6 months)
- **Summer**: Master project in Industry (25 weeks)
- **Fall**: PDM in academia in foreign Universities: 25 weeks
Important rules

Maximum duration of studies

The maximum duration of course semesters

- Maximum amount of study semesters allowed: 6
- Extended by one semester if the internship is done during a semester

The Master’s project must be successfully completed within two semesters of the successful completion of the Master’s cycle (including the industry internship). Should the Master’s project (of a duration of 25 weeks and in industry) serve to validate the engineer’s internship, the deadline is extended to three semesters.

Internship in parallel to taking courses

Performing the industry internship in parallel to taking master courses is generally not encouraged. Exceptions can be granted by the section under the following conditions:

- The student can physically follow the registered courses and attend the exam session
- The maximum amount of credits does not exceed 5 ECTS
- The company accepts that the student takes courses

Failed Master thesis in industry

Students who fail their master thesis in industry during the first attempt are asked to perform their 2nd attempt in a lab at EPFL
If you have finished your bachelor and would like to take an interim year to do your mandatory industry internship for your master, the following academic rules and FRAC status’ apply:

Option 1
- Internship up to 6 months: FRAC “internship” Registered in Ba5
- No master start FRAC “on leave” Semester does not count
- Start master FRAC “present” Registered in Ma2

Option 2
- Internship up to 6 months: FRAC “internship” Registered in Ba5
- No master start FRAC “on leave” Semester does not count

Option 3
- Start master FRAC “present” Registered in Ma1
- Internship up to 6 months: FRAC “internship” Registered in Ba6
- Start 2nd master semester FRAC “present”

Option 4
- No master start for motivated reasons FRAC “on leave”
- Internship up to 6 months: FRAC “internship” Registered in Ba6

In option 4 the fall semester will be accounted to your master studies, except if you are doing your army or civil service.
What is considered «Industry»?

- Every company or start-up offering a workplace outside of an EPFL laboratory (EPFL’s Innovation Parc included)

- Every Research Organisation not delivering academic credits

- Affiliation of independent research labs with academic institutions can lead to a specific decision by the section
How much salary?

☐ There is no official regulation in Switzerland to pay a monthly salary for an internship.

☐ Salaries are mostly ruled by offer and demand

☐ Often the salary is dependent of the company’s size and status
 ▪ Typical salary in large companies: ~3’000 SFr
 ▪ Typical salary in start-ups and SMEs: 1’500 SFr
 ▪ Typical salary in the European Union: 600 - 900 Euros

☐ EPFL recommends a typical monthly salary around 2’000 SFr. However, there is no obligation of the company to comply with this.

☐ In Case of a Master Project in Industry, remuneration can be handled more freely (no monthly salary, compensations, bonus at the end, …)
Internships done during the bachelor degree will not exempt you from the mandatory internship. Exemptions can be granted by the section in the following cases:

- Internships done after your bachelor degree
 - The internship duration must be at least 8 weeks
 - The ending should not be further than 1 year apart from your master beginning date.
 - A work certificate or an evaluation report or a has to be presented to the section deputy

- Industry employment at 100% occupation of at least 1 year related to the field of the future master studies
 - A valid work certificate has to be presented to the section deputy.
Your start-up as substitute to a master thesis in industry?

- A few students will be able to undertake their master projects in industry, at the EPFL Innovation Park to work for their own startup.

- Projects will be co-supervised by a mentor from the Vice Presidency for Innovation and a professor from the section

- This opportunity will be offered to 3-4 projects per year. Students will have to go through a selection process, start by contacting xgrant@epfl.ch.
Who are we?
Engineers of tomorrow, we interest ourselves in the cooperation for a sustainable development around the world

Contact us
Write to us at stages.idm@listes.epfl.ch

We offer you scholarships...
- That covers travel and visa costs
- For an internship
 • In the field of development
 • For a sustainable project
 • Of 8 weeks minimum

Go check our available offers on our webpage!
http://idm.epfl.ch/stages/

Every internship found through « Ingénieur.e.s du Monde » needs to be approved by your section. Please contact the section deputy as soon as you have found an opportunity
EPFL Alumni network

- EPFL students have access to the Alumni network
 - Website: alumni.epfl.ch
 - Pocketcampus app
Le Forum EPFL est maintenu !

du 5 au 9 octobre 2020

au SwissTech Convention Center
Dear Master Student,
Dear PhD Candidate,

Pictet Group, a private bank based in Geneva with global presence (more here www.group.pictet) invites you to the workshop:

“Data Analytics @ Pictet with apero”

to be held at EPFL
on Wednesday, September 25, 2019
from 17:15 to 19:00
in room B14 (BC1)
followed by an apero

[Link to the Pictet Group invitation]

During this workshop, you will have the opportunity to learn more about one of the following topics, please choose the one you prefer:

1. Risk management: how data analytics can help prevent risk? A playground with a fraud detection sample.
2. Asset management: how data are applied to impact investing?
3. Client relationships: how data can be a key game-changer in wealth management?

To apply for this fascinating workshop, please send your CV to cc@epfl.ch stating “Pictet Workshop” in the subject line before September 17, 2019.

Please mention in the email your preferred topic, in order of preference.

The participants will be enrolled on a first come, first served basis.

https://www.epfl.ch/about/recruiting/career-center/
EPFL – Internships
Microengineering and Robotics

- Administrative procedures
COVID-19

- Up to now, the pandemic had no significant impact on internship offers since June 2020

- **Teleworking** is often proposed by companies and acceptable
 100% telework is not encouraged and students should avoid positions that do not propose a physical presence at the company facilities. Exceptions are acceptable in the following case:
 - The industry supervisor and the section (Prof in case of master thesis) acknowledge that 100% teleworking is not incompatible with the professionalizing objective of the mandatory internship program
 - The company guarantees intensive exchange and supervision: Videoconferences, phonecalls, e-mails, etc ...
 - The company plans a return to physical presence as soon as possible

- **Internships outside Switzerland** (valid for any foreign country, status october 2020)
 - During a work placement abroad, the student must comply with the health and administrative rules of the company and the country.
 - The student must check the countries listed by the OFSP, as not recommended according to the coronavirus situation.
 - The student MUST get an insurance for assistance and repatriation, before the departure. A proof has to be sent to the section deputy.
 - The student will have to assume alone possible difficulties for his or her return (flight cancellations, border closures for example).
 - Back to Switzerland, the student will have to follow the rules in force (e.g. quarantine)
The federal council allows foreign students of Swiss academic institution to perform a mandatory internship during their studies: https://www.admin.ch/opc/fr/classified-compilation/20070993/index.html#a39.

Students with Non-EU/EFTA passports require a valid work authorization to do their internship or Master project with monthly salary in Switzerland or EU countries.

EU students performing a 3-6 month internship have to be simply announced at the cantonal office.

It is the company’s responsibility to request this authorization at the proper working office of their canton/country.

It requires up to 8 weeks to obtain this authorization from the cantonal offices.

We recommend that students from non-EU/EFTA countries inform the companies in their motivation letter of these regulations.

Example: “As I’m a non-EU/EFTA resident, your company would be required to ask for a temporary work authorization. Please be advised that the federal council allows foreign students of Swiss academic institution to perform a mandatory internship during their studies: https://www.admin.ch/opc/fr/classified-compilation/20070993/index.html#a39. As I will stay registered at EPFL during this internship, and since this internship is a mandatory part of my Master education, the delivery of this document does not fall into the quota limitation of each canton and is therefore straightforward”.

Work authorization

(not required for Master Projects without a monthly remuneration)
How can you find an internship?

- It is the student’s responsibility to find an appropriate internship to validate his Master degree.
- No responsibility can be taken from EPFL side if no internship has been found by the student.
- The student can find an internship position by himself, but the subject needs to be approved by the section deputy.
- EPFL offers an internship portal on which students can find an alternative to their personal quest for finding an internship.
- Access to the EPFL portal is given through the student’s IS-Academia account.
Other opportunities for finding an internship

- Personal contacts, family, friends
- Topic related agencies and organizations
- International platforms
- Company websites
- EPFL Professors, especially for master projects in Industry

Every Internship found outside the IS-A portal has to be approved by your section. Please send a short but detailed description to the section deputy as soon as you have found an opportunity.
Best practice to set up a master thesis in industry

- Companies get in touch with research labs to propose master thesis topics
- Students contact professors of their section to ask for existing industrial projects
- Students apply for internships on the IS-A portal and have it validated as master thesis projects by the company without involving the supervising professor

> Compatibility with academic calendar

> IP owner(s)

> Confidentiality

> Eligibility of candidate for master thesis

- Professors and teachers propose master thesis projects with known partner companies
- Professors and teachers evaluate the academic content of proposals from companies before accepting it as master thesis projects
- Professors and teachers evaluate the academic content of student proposals without interacting with the host company
Ideal Scenario for Master Projects in industry

Company has an idea for a master thesis project

Company discusses the project with a Professor

Company submits the proposal on the EPFL portal

Student applies for the project through the portal and gets accepted by the company

Project starts under co-supervision by company and professor
Master thesis in industry – offers on the internship portal

<table>
<thead>
<tr>
<th>Action Stage</th>
<th>Entreprise mère</th>
<th>Localisation du stage</th>
<th>Févr-Mars (P1)</th>
<th>Avr-Juin (P2)</th>
<th>Juil-Sept (P3)</th>
<th>N° du stage</th>
<th>Format</th>
<th>Inscrits</th>
<th>Places</th>
<th>Professors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amélioration qualité image satellite par contrôle fin de la ligne de visée</td>
<td>Thales Alenia Space</td>
<td>Cannes, France</td>
<td>✓</td>
<td>✓</td>
<td>18975</td>
<td>Stage</td>
<td>0</td>
<td>1</td>
<td>14.09.2017</td>
<td></td>
</tr>
<tr>
<td>Experimental Physics Internship</td>
<td>Elektron GmbH</td>
<td>Zürich</td>
<td>✓</td>
<td>18973</td>
<td>PDM au Stage</td>
<td>0</td>
<td>1</td>
<td>à trouver (si PDM)</td>
<td>14.09.2017</td>
<td></td>
</tr>
<tr>
<td>Transfer learning for field and crop adaptation in agriculture applications</td>
<td>ecoRobotix</td>
<td>Yverdon-les-Bains</td>
<td>✓</td>
<td>18972</td>
<td>PDM au Stage</td>
<td>0</td>
<td>1</td>
<td>à trouver (si PDM)</td>
<td>14.09.2017</td>
<td></td>
</tr>
<tr>
<td>Product Engineer</td>
<td>Infilcon Technologies France</td>
<td>Aix en Provence</td>
<td>✓</td>
<td>18967</td>
<td>Stage</td>
<td>0</td>
<td>1</td>
<td>14.09.2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Déploiement d’un système de sûreté pour un site sensible</td>
<td>Elavis SA</td>
<td>Corbeve</td>
<td>✓</td>
<td>18962</td>
<td>Stage</td>
<td>0</td>
<td>1</td>
<td>12.09.2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal effect and Compensation in high precision states</td>
<td>Elvi S.A.</td>
<td>Biel</td>
<td>✓</td>
<td>✓</td>
<td>18953</td>
<td>Stage</td>
<td>0</td>
<td>1</td>
<td>13.09.2017</td>
<td></td>
</tr>
<tr>
<td>Intern Manufacturing</td>
<td>Stryker Trauma AG</td>
<td>Basalch (SO)</td>
<td>✓</td>
<td>18934</td>
<td>Stage</td>
<td>0</td>
<td>1</td>
<td>12.09.2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modélisation d’un processus de lençonnage</td>
<td>Constellium Valais SA</td>
<td>Sierre</td>
<td>✓</td>
<td>18912</td>
<td>Stage</td>
<td>0</td>
<td>1</td>
<td>12.09.2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hybrid PET/MR imaging guided radiation therapy treatment planning</td>
<td>Hôpitaux Universitaires de Genève</td>
<td>HUG Genève</td>
<td>✓</td>
<td>✓</td>
<td>18930</td>
<td>PDM coordonné</td>
<td>0</td>
<td>2</td>
<td>Prof. Thiran Jean-Philippe</td>
<td>12.09.2017</td>
</tr>
<tr>
<td>Various internship positions in Motion analysis Startup for applications in Sports, Health and Gaming</td>
<td>Gait Up</td>
<td>Renens</td>
<td>✓</td>
<td>18922</td>
<td>Stage</td>
<td>1</td>
<td>2</td>
<td>12.09.2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Various internship positions in Motion analysis Startup for applications in Sports, Health and Gaming</td>
<td>Gait Up</td>
<td>Renens</td>
<td>✓</td>
<td>✓</td>
<td>18920</td>
<td>PDM coordonné</td>
<td>0</td>
<td>2</td>
<td>Prof. Amiran Kamilar</td>
<td>12.09.2017</td>
</tr>
<tr>
<td>Printed freeform optics for light control</td>
<td>CSEM SA Muttenz</td>
<td>Basel</td>
<td>✓</td>
<td>18915</td>
<td>PDM au Stage</td>
<td>0</td>
<td>1</td>
<td>à trouver (si PDM)</td>
<td>11.09.2017</td>
<td></td>
</tr>
</tbody>
</table>
Master thesis in industry, some advice for students

- Give priority to Master thesis proposals from laboratories of your section and proposals posted on the IS-A portal with confirmed academic supervisor.

If you can’t find a suitable topic this way, consider doing an internship to validate your industry immersion. If this is not an option, then proceed like this:

- Contact potential academic supervisors to inform them on your intentions.
- Apply for positions and inform companies on your objective to do a master thesis (in motivation letter, during e-mails exchanges and interviews, …).
- Refer to the following webpage to inform the company.
- Organize a meeting between the academic supervisor and the company to discuss the content and workplan of the project and settle administrative issues. Suggest the signature of the EPFL master thesis agreement (to settle IP and confidentiality).
- Insure a coordinated supervision and regular meetings between the company and the teacher during the project.
1. Introduction

This document sets out the rules to be observed in the field of supervision of master projects in industry.

A professor may not under any circumstances supervise a student’s master project without first making contact with the company prior to any commitment by the parties. Professors are entitled to refuse to supervise a student’s master project should the terms discussed with the company not suit them or contravene EPFL requirements in this field.

The master project in industry remains first and foremost a master project. It must therefore include an academic dimension defined and controlled by the professor. Although it is performed in a company, the master project must imperatively include a research and innovation angle, thus contributing to the advancement of science in its field.

In addition, the collaboration induced by the master project in industry must benefit the research carried out by the laboratory. It is also important that the laboratory’s research be protected and not therefore offered to companies in the framework of master projects.

3.2. Use of EPFL resources

Students may not use EPFL installations, resources, information, software or other intangible assets without their professor’s written approval.
How does the internship portal work?

- Browse through the internship offers of your Master program
- Apply for a position by uploading 2 mandatory documents:
 - CV
 - motivation letter
- Applications are sent on a weekly basis to the companies (every Monday 14h00)
- Wait for the company to make its selection process (up to several weeks)
- If no response after 2 months, contact your internship coordinator
- You will be contacted by the company if your application was successful
 (Most selection processes involve an interview and several e-mail exchanges)
- You MUST accept only one offer and reject all the others within the next 3 working days.
 - No withdrawal from the accepted position!
 - Kindly notify all other companies you had privileged contact with
End of January: Mailing to Industry
Mid-February
June: End of Spring Semester
August 1st: Possible 1st starting date
August 1st – September 30th
Internship 2-6 Months
PDMe 25 weeks

Student applications sent to Industry every Monday 2:00 PM
Attribution process in the fall semester

- Sept. 1st: Mailing to Industry
- End of September: End of Fall Semester
- December: End of Fall Semester
- Beginning of Spring Semester: Possible 1st starting date

- Internship 2-6 Months
- PDMe 25 weeks

Student applications sent to Industry every Monday 2:00 PM

Mid-February – March 1st
Internship attribution, possible scenarii

- 1st application round
 - Internship 1: Refused

- 2nd application round
 - Internship 2: In progress

- 3rd application round
 - Internship 3: Refused
 - Internship 4: In progress

- 4th application round
 - Internship 5: In progress

Within 3 days:
- Accept
- Refuse

Master thesis:
Don’t accept a position without academic supervisor
Mandatory: Register internships found on your own

- Submit a short but detailed description of your internship to your section’s deputy
- Once you have signed the tripartite internship agreement, enter your project details on the internship portal by creating a new internship proposal, and upload a pdf copy of the agreement.
Some advice to prepare your application documents

- **2 important documents**
 - Motivation letter
 - Curriculum vitae (CV)

 The criteria for interview selection by the company is mostly based in these documents. Reference letters can be added as well. Your motivation letter should specifically address the company and the proposed subject.

- **Language**: you should use the language of the offer

- **To be avoided**:
 - No motivation letter
 - Copy-paste errors
 - Wrong addressing
Interview

Most companies would like to meet the students for an interview prior to making their final choice.

- Be prepared for the interview and demonstrate a professional attitude.
- Non EU/EFTA students: Inform the company about the required work authorization.
- If the living allowance is mentioned in the description, do not bargain. If not mentioned, inquire for it.
- Follow up: After the interview, write a short e-mail as feedback of your interview to the company and CC the internship coordinator.

For Master projects: Do not accept a position without having confirmed the eligibility of the project and settled the details with the academic supervisor.
Prepare your internship campaign!

EPFL proposes 5 modules of 1h30:

This fall semester

1. Understanding recruiters
2. Reviewing the CV
3. The motivation letter

Next spring semester

4. The Job interview
5. Communication and organization at work

Each course will be given 2x in English and 2x in French
Information and mandatory registration here: https://bookwhen.com/stages
Anticipate!

- A change of residence or relocation might be necessary
- Setting up a Master thesis in industry takes several weeks/months

- Time consuming formalities might be required:
 - Confirm an internship
 - Visa, Work authorization and Residence permit (typically 4-8 weeks)
 - Collection of the signatures of the internship agreement
 - New validation of your passport
 - ...

- It is your responsibility to settle these formalities prior to the Internship beginning
Update your FRAC

In case your internship is done during an academic semester, make sure to update your FRAC according to your status:

☐ In case of a credited internship (only EE students):
 ■ Semester (choose the right one: MA1; MA2; MA3)
 ■ Status: Internship (authorized by the section)
 ■ Mention in the comments « Credited internship during master course (SCS) »

☐ In case of a long internship without credits
 ■ Semester: (choose the right one: MA1; MA2; MA3)
 ■ Status: Internship (authorized by the section)
 ■ Mention in the comments « Detached internship but credited with master Project (STAP) »

If you take courses in parallel to your internship, your FRAC status should be «present»
(See regulations for this on slide # 12)
Announce your stay abroad to EPFL Safety domain

- [] http://securite.epfl.ch/voyages
- [] Comply with updated COVID-19 recommendations

Safety during business and academic travels

According to legal bases, employers have a duty towards their employees to inform, prevent, control and intervene. To fulfill these legal requirements, EPFL relies on a competent partner, renowned for their skills in assisting organizations in the area of risks linked to business and academic travel abroad: International SOS. Thanks to their services, employees and students benefit from medical and security assistance in the whole world, as from June 1, 2014.
The internship agreement (French version) specifies the commitments and responsibilities of EPFL, the company and the internship student. This agreement must be signed for all engineering internships.

No other tripartite agreement involving EPFL will be signed by the section.

Alternative contract proposed by the company and signed only by the student are acceptable in some cases, but the students must carefully read and comply with the content (IP issues, confidentiality, insurances and especially non-competition clauses).

The company must accept to fill out the EPFL evaluation report at the end.
The **master thesis agreement (access for teachers only)** specifies the commitments and responsibilities of the supervising teacher, the company and the student. This agreement **can be signed upon request of the teacher or the company**

- It defines IP and confidentiality aspects for any master thesis in industry without existing collaborations.
- It allows the academic supervisor to have access to the results of your work without having to sign an NDA.
- **As it is not mandatory**, amendments and changes requested by companies won’t be accepted by the internship coordination or the legal department of EPFL.
During and after the internship

- In case of problems (accident or illness, personal problems, conflict with supervisors, ...), contact urgently the Section deputy and the STI Internships coordinator.

- No written report of the student is requested by EPFL (except for credited internships in EE), but can be requested by the company.

- To validate your internship, an evaluation form has to be filled out by the student and the supervisor in the company (sent out 2 weeks prior to ending).
Mandatory Steps for a 2-6 month internship

- Find an internship position and in case you have found it by yourself, without using the IS-A portal, have the subject validated by your section deputy.
- Inform the STI coordinator that you have found your internship.
- Cancel all ongoing applications by gently notifying the companies. This step is extremely important to keep a good relationship with future employers.
- Transmit the EPFL internship agreement to the employer and have it filled out and signed by the employer and the section deputy.
- Transmit a copy of the agreement to the section secretariat.
- If you are a non-swiss/EU citizen, ask the company to request a work authorization for the duration of the internship. More information here. (Link to obtain a mandatory internship certificate.)
- Once all the details of your internship have been settled, enter or edit the details of your internship on the IS-A internship portal. Upload a copy of the signed internship agreement.
- If your internship takes place during an academic semester, make sure to update your FRAC.
- At the end of the internship, fill out the evaluation report that will be sent to you by e-mail. The evaluation procedure starts 2 weeks prior to the official ending of the internship. Both the student and the supervisor will fill out an evaluation report.
Mandatory Steps for a Master project in Industry

- Find a master project in industry by contacting the professors of your section.
- A master subject can also be found through the IS-A Internship portal. In this case, it is mandatory to find a professor willing to supervise you before you accept the offer from the company. Make sure to comply with the following directions: Coordinated Master Thesis in Industry
- Official starting dates for master projects are determined at a school level. Other starting dates can be obtained on special request to your section.
- All administrative details of your master project in industry have to be settled between the employer and the professor supervising your work. A special Master project agreement (link only accessible to Professors) can be signed on request by the supervising professor or the partner company.
- Once all the details of your Master project have been settled, register your project in your study plan.
- Update your FRAC

General information about Master’s Projects
EPFL internships on the web

https://sti.epfl.ch/research/institutes/igm/education/engineering-internship/

EPFL webpage:
Important remarks

- As an EPFL student doing an internship in industry, you act as an EPFL Ambassador. Thanks to your work and positive attitude, you will leave an important impression in the company.

- This aspect is not only important for your future professional career, but also for the EPFL internship program which will benefit from this lasting impression.
EPFL – Internships
Microengineering and Robotics

- More info and statistics
EPFL links to Industry

- **Vice Presidency for Innovation**
 - Tech transfer
 - Innovation Park
 - Sponsored chairs
 - Special programs
 - Alliance

- **Career Center**
 - Employer survey
 - Jobs for Brains Recruitment platform
 - Recruitment days
 - Round tables
 - Sponsorships
 - EPFL Forum

- **EPFL Alumni**
 - Network
 - Events
 - Magazine

- **Section advisory boards**
 - Meeting every year

- **Research labs; industrial projects**

- **Master Theses in Industry**
- **Internships in Master curriculum**

1'200 EPFL students each year
Value chain from internships to industry funded research

- Internships
- Master projects
- Funded research
- EPFL academic rankings
- Innovation for Industry
- Professional insertion of students
- Startups
Master Thesis Interaction Map (Year 2015)
Student auto-evaluation
(Years 2015-2020, 1400 students)

- The placement gave me a clear idea as to the realities of working life
- The placement was an opportunity for me to acquire new practical skills and knowledge
- I was able to demonstrate my professional independence
- I have good communication skills
- I integrated well into the professional context
- I improved my organisational skills
- I was able to apply my technical and scientific knowledge
Internship evaluations

Feedback on the host company by student
(Years 2015-2020, 1400 students)
Internship evaluations

Company evaluation of the student (Years 2015-2020, 1400 STI students)

<table>
<thead>
<tr>
<th>Overall Evaluation</th>
<th>Excellent</th>
<th>Good</th>
<th>Sufficient</th>
<th>Insufficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independence</td>
<td>928</td>
<td>442</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>739</td>
<td>545</td>
<td>168</td>
<td>128</td>
</tr>
<tr>
<td>Integration in the professional world</td>
<td>621</td>
<td>626</td>
<td>411</td>
<td>185</td>
</tr>
<tr>
<td>Planning and management of work tasks</td>
<td>623</td>
<td>636</td>
<td>106</td>
<td>93</td>
</tr>
<tr>
<td>Application of scientific and technical knowledge</td>
<td>858</td>
<td>454</td>
<td>495</td>
<td>442</td>
</tr>
</tbody>
</table>

Technical skills and knowledge
- Ability to self-evaluate and to respond constructively to feedback
- Mastery of domain-specific methodologies
- Definition of work objectives and management of priorities
- Evaluation of resources required
- Definition of work objectives and management of priorities
- Ability to present and defend her/his own ideas
- Capacity to access sources of information and to evaluate them
- Capacity to self-evaluate and to respond constructively to feedback

Self-evaluation and response to feedback
- Quality of the work delivered
- Capacity to work in teams
- Respect for the organization's procedures and rules

Communication
- Written communication (structure, clarity, coherence of reasoning)
- Oral communication (clarity, reasoning, self-confidence)
- Interpersonal skills and engagement, including in a multicultural context
- Teamwork

Integration in the professional world
- Application of scientific and technical knowledge
- Ability to resolve complex problems
- Technical skills and knowledge
- Respect for the organization's procedures and rules

Ethics and respect
- Application of scientific and technical knowledge
- Application of scienti...
Internship offers from industry – to Engineering students

<table>
<thead>
<tr>
<th>Year</th>
<th>Internships</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>236</td>
</tr>
<tr>
<td>2012</td>
<td>532</td>
</tr>
<tr>
<td>2013</td>
<td>597</td>
</tr>
<tr>
<td>2014</td>
<td>671</td>
</tr>
<tr>
<td>2015</td>
<td>690</td>
</tr>
<tr>
<td>2016</td>
<td>844</td>
</tr>
<tr>
<td>2017</td>
<td>942</td>
</tr>
<tr>
<td>2018</td>
<td>1141</td>
</tr>
<tr>
<td>2019</td>
<td>1377</td>
</tr>
</tbody>
</table>
Number of offers - Per Engineering student

<table>
<thead>
<tr>
<th>Year</th>
<th>Materials</th>
<th>Mechanical</th>
<th>Electrical</th>
<th>Micro</th>
<th>Bio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>4,3</td>
<td>3,3</td>
<td>1,5</td>
<td>1,5</td>
<td>4,2</td>
</tr>
<tr>
<td>2012</td>
<td>4,8</td>
<td>3,4</td>
<td>4,7</td>
<td>4,7</td>
<td>4,2</td>
</tr>
<tr>
<td>2013</td>
<td>6,6</td>
<td>3,4</td>
<td>7,0</td>
<td>7,0</td>
<td>4,3</td>
</tr>
<tr>
<td>2014</td>
<td>7,2</td>
<td>3,6</td>
<td>9,2</td>
<td>9,2</td>
<td>4,3</td>
</tr>
<tr>
<td>2015</td>
<td>7,2</td>
<td>3,6</td>
<td>10,3</td>
<td>10,3</td>
<td>4,3</td>
</tr>
<tr>
<td>2016</td>
<td>7,2</td>
<td>4,4</td>
<td>7,4</td>
<td>7,4</td>
<td>4,3</td>
</tr>
<tr>
<td>2017</td>
<td>10,5</td>
<td>4,7</td>
<td>11,9</td>
<td>11,9</td>
<td>4,3</td>
</tr>
<tr>
<td>2018</td>
<td>12,0</td>
<td>5,8</td>
<td>16,8</td>
<td>16,8</td>
<td>4,3</td>
</tr>
</tbody>
</table>
Number of offers - Per week

In 2019:

- Electrical Engineering: 758 offers (+24% vs 2018)
- Mechanical Engineering: 549 offers (+31% vs 2018)
- Microengineering: 652 offers (+28% vs 2018)
- Materials Sciences: 437 offers (+32% vs 2018)
Internship countries of STI students (2015-2019)

<table>
<thead>
<tr>
<th>Country</th>
<th>EL</th>
<th>GM</th>
<th>MT</th>
<th>MX</th>
<th>Somme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suisse</td>
<td>205</td>
<td>383</td>
<td>367</td>
<td>203</td>
<td>1,158</td>
</tr>
<tr>
<td>France</td>
<td>16</td>
<td>69</td>
<td>14</td>
<td>14</td>
<td>115</td>
</tr>
<tr>
<td>Allemagne</td>
<td>13</td>
<td>14</td>
<td>11</td>
<td>5</td>
<td>43</td>
</tr>
<tr>
<td>Etats-Unis</td>
<td>9</td>
<td>2</td>
<td>18</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>Japon</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>Pays-Bas</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Chine</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>Belgique</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>Espagne</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Suède</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Royaume-Uni</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Norvège</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Singapour</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Brésil</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>EL</th>
<th>GM</th>
<th>MT</th>
<th>MX</th>
<th>Somme</th>
</tr>
</thead>
<tbody>
<tr>
<td>VD</td>
<td>84</td>
<td>173</td>
<td>205</td>
<td>55</td>
<td>517</td>
</tr>
<tr>
<td>GE</td>
<td>22</td>
<td>71</td>
<td>35</td>
<td>32</td>
<td>160</td>
</tr>
<tr>
<td>NE</td>
<td>22</td>
<td>32</td>
<td>40</td>
<td>21</td>
<td>115</td>
</tr>
<tr>
<td>AG</td>
<td>31</td>
<td>19</td>
<td>4</td>
<td>21</td>
<td>75</td>
</tr>
<tr>
<td>ZH</td>
<td>9</td>
<td>22</td>
<td>23</td>
<td>14</td>
<td>68</td>
</tr>
<tr>
<td>BE</td>
<td>12</td>
<td>15</td>
<td>25</td>
<td>8</td>
<td>60</td>
</tr>
<tr>
<td>FR</td>
<td>5</td>
<td>20</td>
<td>7</td>
<td>11</td>
<td>43</td>
</tr>
<tr>
<td>VS</td>
<td>11</td>
<td>7</td>
<td>10</td>
<td>8</td>
<td>36</td>
</tr>
<tr>
<td>SO</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>LU</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>SG</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>JU</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>BL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>BS</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>
Average number of applications through portal to secure the internship

<table>
<thead>
<tr>
<th>Location</th>
<th>Applications per Internship</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL</td>
<td>3.7</td>
</tr>
<tr>
<td>GM</td>
<td>4.9</td>
</tr>
<tr>
<td>MT</td>
<td>3.4</td>
</tr>
<tr>
<td>MX</td>
<td>4.7</td>
</tr>
<tr>
<td>EPFL</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Notes:
- EL: 20 internships
- GM: 50 internships
- MT: 55 internships
- MX: 21 internships
- EPFL: 402 internships

2019
Average number of applications through portal to secure the internship

School of Engineering

<table>
<thead>
<tr>
<th>Year</th>
<th>STI Internships</th>
<th>EPFL Internships</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>57</td>
<td>2.9</td>
</tr>
<tr>
<td>2015</td>
<td>92</td>
<td>3.2</td>
</tr>
<tr>
<td>2016</td>
<td>60</td>
<td>3.3</td>
</tr>
<tr>
<td>2017</td>
<td>98</td>
<td>4.4</td>
</tr>
<tr>
<td>2018</td>
<td>140</td>
<td>4.7</td>
</tr>
<tr>
<td>2019</td>
<td>146</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5</td>
</tr>
</tbody>
</table>
Average number of applications by Nationality to secure the internship (2014 – 2019)
Information and contacts

☐ For further information, please visit the internship page of your section:
https://sti.epfl.ch/research/institutes/imt/internships/procedure-for-students/

☐ Depending on your inquiry, you can contact the following persons:

Sebastian Gautsch
SMT
Adjunct to the section director

Hind Klinke
STI
Internship Coordinator

Isabelle Schafer
SMT
Administration

Stéphanie Mottier
STI-DO
Administration
Questions?

Thank you for your attention
And best of success for your internship campaign!