
Semester Project

Laboratory of Applied Photonics Devices

Mice ex-vivo retina projector design,
implementation and acquisition synchronization

with electrical electrode array

Student:
Victor Tiberghien (250380)

Supervisor:
Babak Rahmani

Professor:
Christophe Moser

Lausanne, Fall 2020

Ecole Polytechnique Fédérale de Lausanne



Contents
1 Introduction 1

2 Optical setup 2

3 Devices 3
3.1 Stimulus Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1.1 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Electrodes amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2.1 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Digital Micromirror Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.3.1 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Montage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Overall script 7
4.1 Images preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Images projection & data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.3 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.4 Data visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Tests & results 10

6 Conclusion 15

7 Appendices 16



List of Figures
1 Complete optical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Stimulus generator device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Trigger signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4 Electrodes amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5 Digital Micromirror Device and its controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
6 DMD timing in slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
7 Overall montage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
8 Images compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
9 Graph obtained after the projection of 6 images on a photodiode . . . . . . . . . . . . . . . . 9
10 Experiment of sampling the analog value of a logical signal . . . . . . . . . . . . . . . . . . . 10
11 Images used to assess the capability of the DMD to project grayscale patterns . . . . . . . . . 11
12 Montage with the photodetector connected to an analog input of the electrodes amplifier . . 11
13 Values obtained after the projection of images on the photodetector . . . . . . . . . . . . . . 12
14 Values obtained after the projection of images on the photodetector with datatips measurements 12
15 Time delay measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
16 Graph obtained after the projection on the DMD of two packets of images; The first one with

2730 images and the second one with 1880 images . . . . . . . . . . . . . . . . . . . . . . . . 14



1 INTRODUCTION 1

1 Introduction

The objective of this project is to build a setup in order to characterize the electrical responses of an ex-vivo
retina excited by projecting different images on it. The setup requires having a perfect synchronisation
between the projected images and the electrical impulses captured. Indeed, retina neurons response to light
stimulation is very fast, in the order of a few milliseconds. Another important aspect that needs to be
taken into consideration is that the experiment with the ex-vivo retina needs to be done at a relatively high
speed. Consequently, the setup needs to be reliable, without any measurements loss, at high sampling rates.
Moreover, as the experiment with the retina is conducted with large quantities of images (up to 10′000),
the system must be able to manage autonomously the flux of images to be projected by the intended devices.

The following report is divided into multiple sections. First of all, the optical setup as well as the optical
components are briefly introduced. Then, the different electronic devices used for this experiment are presen-
ted: the stimulus generator to control the speed of the experiment by generating a trigger signal, the Digital
Micromirror Device (DMD) to project images on the sample and the electrodes amplifier on which the sample
is placed to capture the electrical responses. Afterwards, the scripts written to control and capture data
from the devices are discussed. Finally, the multiple tests carried out to verify the proper functioning of the
setup as well as their results are discussed.
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2 Optical setup

Figure 1: Complete optical setup

1. White LED from THORLABS, number MWWHF2. This is the light used for the experiment. It is
coupled to the optical system using a multimode fiber. A white light implies a broad spectrum that
needs to be corrected to avoid chromatic aberrations. Chromatic aberrations occur when different
wavelengths focus at different distances.

2. Achromatic Doublet, f=40[mm] from THORLABS, number AC254-040-A-ML. This lens collimates the
light coming from the fiber on the surface of the DMD. Also, this specific lens allows to correct the
chromatic aberrations by using two lenses to bring together the blue light and the red light.

3. Digital Micromirror Device (DMD), see section 3.3.

4. Tube lens, f = 200[mm] THORLABS, number TTL200-A. Those lenses are designed to be used with
infinity-corrected objectives.

5. Cube-Mounted Non-Polarizing Beamsplitter from THORLABS, number CCM1-BS013/M. Beamsplit-
ters are used to split a light beam into two separate beams or can be also used in reverse to combine
two beams into a single one. In this particular case, it is used to project images on the sample and at
the same time, to observe it with a CCD camera.

6. Objective 2.5x/0.06 infinity corrected from Zeiss. In an infinity corrected optical system, the image
created by the objective is set to infinity. A specific tube lens needs to be placed after the objective in
order to produce an intermediate image.

7. Achromatic Doublet f = 45[mm] from THORLABS, number AC254-045-A-ML. Lens to couple the
camera to the optical system.

8. CCD Camera, 1024x768 resolution from THORLABS, number DCU223M. Camera used to observe the
sample.
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3 Devices

3.1 Stimulus Generator
In order to generate simultaneous stimulus to synchronize the DMD and the electrodes amplifier, one can use
a stimulus generator. The model used for the setup is the STG4004 from Multichannel Systems. The device
is able to generate stimulus with all kind of shapes and amplitudes. It can generate analog or transistor-
transistor logic (TTL) pulses. In the context of this experiment, TTL signals were used such that they can
trigger the DMD and the electrodes amplifier. Those pulses are made of two states: logic state HIGH which
corresponds to a 3.3[V ] output signal and a logic state LOW which corresponds to a 0[V ] output signal.
The main parameters that can be configured are the ONtime, the OFFtime as well as the number of pulses.
Those can be visualized in Figure 3.

The STG4004 is connected to the computer via USB2.0 and connected to the DMD and electrodes amplifier
via two Sync Out BNC connectors located at the back of the device. This particular model can generate
stimulus up to 25[kHz].

Figure 2: Stimulus generator device

3.1.1 Programming

The stimulus generator operates in download mode, meaning that the stimulus are first created on the com-
puter and then transferred to the device. Once the transfer is over, the stimulus can be generated either by
pressing the play button on the device or by sending the start command via software with a computer.

The interface between the computer and the STG4004 is achieved via a Python class located in the
MCS_devices.py file. The class is made after the inheritance of the class loaded with the Dynamic Link
Library(DLL) file.
When an instance of the class is created, the constructor is automatically called. The latter will first look
for connected devices and make sure that the STG is connected.
Once connected, the stimulus generator is first cleared of previous data. Then, each output is individually
configured. All 4 SYNC OUT outputs are activated, while the analog outputs are deactivated. Then, the
same stimulus is created for the all SYNC OUT outputs according to the desired parameters (Tlow, THigh,
number of repetition). Finally the stimulus is transferred to the device.
A separated command is then sent in order to start the stimulus.
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Figure 3: Trigger signal

3.2 Electrodes amplifier
The electrodes recording used for the setup is the USB-MEA256-System from Multichannel Systems. It
captures and amplifies the signal coming from the retina thanks to a Microelectrodes array (MEA) composed
of 252 electrodes and 4 reference electrodes as it can be seen in Figure 4. The raw signal coming from the
electodes is then digitalized in real time by the integrated analog / digital converter. The latter being able
to reach a sampling rate of up to 40[kHz] per channel. The voltage range of those electrodes is ±3.7[mV ]
with 16 bits resolution which corresponds to a resolution of 113[nV ]. Additionally, the device is equipped
with digital inputs than can be used to receive the triggering signal coming from the stimulus generator in
order to synchronise the recording with the stimulation of the sample.

Figure 4: Electrodes amplifier

3.2.1 Programming

The interface between the computer and the electrodes amplifier is achieved through the python class
MCS_MEA located in the MCS_devices.py file. At the creation of an instance, the constructor firstly
check if the device is connected to the computer and if it is the case, it connects to it.

Afterwards, the device is configured with the desired parameters. First of all, the sampling frequency of the
electrodes is set, it can go from 1[Hz] up to 40[kHz]. Then, the number of channels to activate is chosen.
Here, since we want all 252 electrodes plus 4 analog inputs, all the 256 channels are activated. Furthermore,
the digital input used for the triggering signal is also activated. We end up with a total of 257 values for one
sample. The data format of the measurements is also configured. For the current setup, it is set to unsigned
integers of 16 bits. Then, the buffer needs to be set up. It contains all the samples that have been recorded
but not yet sent to the computer. It’s a kind of waiting queue based on the principle of First In First Out
(FIFO). For this experiment, the queue size is set to hold up to 106 samples which is close to the maximum
available memory.
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Each time a new packet of samples is recorded and sent to the computer, a thread function is automatically
called within the script. A thread function is a function that can be run simultaneously to the main script
when a certain event occurs (here, reception of a new packet). The packet size is configured to contain a
number of samples of half the sampling frequency, #samples = sampling_frequency/2. It means that
during the recording process, the thread function is called every 500[ms]. This value has been found after
several tries and failures. The callback function receives a single table, data[ ], containing the measurements
coming from the device and saves it in the .csv file. The structure of data[ ], can be seen in Table 1.

Samples Analog 0 Analog 1 ... Analog 255 Digital IN
Sample 1 data[0] data[1] ... data[255] data[256]
Sample 2 data[257] data[258] ... data[512] data[513]

... ... ... ... ... ...
Sample 10 data[2570] data[2571] ... data[2825] data[2826]

Table 1: Structure of an array sent by the electrodes amplifier

3.3 Digital Micromirror Device
A digital micromirror device is an array of binary micromirrors that can be actuated individually using an
electrocapacitive actuation. It can also generate grayscale images by toggling on and off the mirrors at high
frequencies determined by pulse-width modulation. The DMD chip used for the experiment is the model
DLP7000BFLP manufactured by Texas Instrument. It contains 1024 by 768 mirrors that represent the
pixels. Each mirror tilts with angles of ±12◦ relative to the flat surface. This particular model is made to
be used with visible light, that is wavelengths in the range of 400[nm] to 700[nm].

The chip itself comes with a controller that provides an interface with a computer. The model used is the
V4100 board by Vialux. It allows, among other things, to store images to be displayed as well as tuning
different parameters such as the picture time or the hardware trigger. This particular model has a 16[Gbit] on
board DDR2 RAM intended to store images. The controller enables also the possibility to display grayscale
images of 255 different values (8[bits]). In our configuration, the DMD is controlled via the trigger signal
sent by the stimulus generator. In order to achieve this, one can use the pins TRIGGER_IN and GND
located on the Multi-Purpose I/O Molex connector of the controller.

Figure 5: Digital Micromirror Device and its controller

3.3.1 Programming

The interface between the DMD controller and the computer is achieved through the Dynamic Link Library
alpV42.dll. This file contains all the necessary functions required to configure and operate the DMD. In
order to access those functions, the python class DMD located in the file communication.py is used. This
class is an adaptation and modification of a version made by Matthias Müller-Schrader in 2015 at ETHZ.
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At the creation of an instance of the class, the constructor looks for the DMD serial number to ensure that
the communication is well established. Then, the DMD needs to be configured in the slave mode. In this
configuration, the DMD projection loop waits for a trigger event before the next picture of the sequence is
displayed. It is also important to define the trigger event. In our case, it was chosen to work with the rising
edge of the triggering signal, that is when the signal goes from 0 to 1 (0[V ] to 3.3[V ]). Figure 6 displays
how the signal TriggerIn triggers the PictureTime. The PictureTime is the time during which a picture is
displayed on the DMD. This is an important parameter that needs to be modified by the user in the main
Python file. The minimum possible PictureTime depends on the format of the images. For binary images
it is 44[µs] while for 8 − bits grayscale images it is 3.4[ms]. It turns out to be the limiting factor for the
experiment images frequency.

Figure 6: DMD timing in slave mode

On the DMD, the pictures are organized in sequences. Once a sequence of pictures is created (see Section
4.1), it is uploaded via USB2.0 on the DMD on board RAM. Finally, when the upload is finished, the DMD
can be put in a standby mode, meaning that it waits for the trigger events so that it can display the picture
one after the other. While waiting for trigger events, the script is paused until the end of the sequence. Even
if the script is paused, if a new packet of samples is sent by the electrodes amplifier, the computer will still
be able to process it because the data is treated by a thread function that can run in parallel.

3.4 Montage

Figure 7: Overall montage
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4 Overall script

4.1 Images preparation
For this experiment, grayscale images are needed. Consequently, each pixel of an image has an 8− bits value
ranging from 0 to 255. Before uploading the images to the DMD, these need to be compiled in order to be
understood by the DMD. This is achieved by the function import_and_compile_images(). The latter looks
for a certain type of image extension in a certain folder, for instance .png. Then, knowing the total number
of images, it divides them into several packets such that the number of images in a single package doesn’t
exceed the maximum number of images that the on-board DMD memory can hold. This maximum capacity
can be approximated knowing the on-board RAM of the module:

#MAX_IMAGES =
On-board RAM[bits]

#bits per pixel ·#pixels in an image
=

16 · 109

8 · (1024 · 768)
= 2543 images (1)

Finally, each packet containing a list of 2D arrays representing the images needs to be resized. This is
achieved using the function compilePicture located in the file communication.py. The latter transforms each
2D array into a single 1D array and arranges them one after the other. This final resulting 1D array contains
the individual 8− bits pixels of each image. Its length is equal to: 1024 · 768 ·#images in the packet. Figure
8 shows this last step of the compilation.

Figure 8: Images compilation

4.2 Images projection & data acquisition
Once all the images are compiled, the data file .csv that will contain all the measurements is created and
prepared to receive incoming data. A timestamp is added to the file in order to keep a trace of when the
experiment was performed.

The script then enters a for loop according to the number of packets required to project all the images.
Next, all the devices need to be configured according to the experiment parameters: the electrodes sampling
frequency, the DMD picture time and the trigger frequency. The number of repetitions of the trigger signal
is given by the number of images in the current packet. Then, all the images contained in the current packet
are uploaded as a sequence to the DMD and the latter is put on standby, waiting for the trigger signal.
The data acquisition is started and finally, the start command is sent to the stimulus generator. The script
starts receiving data from the electrodes amplifier and, at the same time, waits for the end of the sequence
which is signaled by the DMD when all the pictures in the sequence have been projected. Once finished,
the data acquisition is stopped and the DMD memory is freed. Finally, at the end of the loop, the script is
paused again so that all the remaining data on the memory of the electrode amplifier can be properly sent
and stored on the computer before acquiring data of the next packet.
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Once every packet is displayed and all the corresponding data is stored in the data file, all the devices
are properly disconnected and a .txt file containing the experiment paramerters is created with the same
timestamp as the data file.

4.3 Data processing
The data containing the measurement needs some processing before being able to plot it. At first, the data
was processed in real time, in the callback function, as it was coming from the electrodes amplifier. Each time
a new set of samples arrived, it would convert it and reshape the array such that each line correspond to an
individual sample. The problem with that method is that when the sampling frequency of the measurement
exceeds a certain threshold situated around 1[kHz], the amount of samples into a single set is so large that
the computer doesn’t have the time to fully process this set before the next one arrives. This resulted in
incomplete data .csv file with incomplete or missing samples.

The solution found for this problem is that instead of processing that data in real time as it comes, the data
is now saved directly in the file without any kind of processing. The arrays data[] containing the sets of
samples are saved line by line in the file. This allows to reduce the computing time and thus to save the
incoming data at high frequencies without any loss. However, at the end of the experiment, the data still
needs to be processed. This is achieved using a separated script process_data.py.

The script performs two different steps simultaneously. The first step is to reshape the data file such that
each line corresponds to a different sample and not a whole set as it is the case when the data is coming from
the electrode amplifiers. The second step is to convert the raw numerical values of the measurements such
that they can be expressed in V olts. The data format used to encode the measurements is uint16, which
corresponds to 16 bits unsigned integers that go from 0 to 216 = 65536. A sample consists of three different
kinds of measurement: there are 252 analog values coming from the MEA with a range of ±3.7mV , 4 analog
values from the additional analog inputs with a range of ±4.096V and 1 digital value coming from the digital
IN. Only the analog values need to be converted. The following formulas illustrate how the conversion is
performed:

MEA_value[mV ] =
raw_value

65535
· (2 · 3.7)− 3.7 (2)

Analog_value[V ] =
raw_value

65535
· (2 · 4.096)− 4.096 (3)

The result of this processing is saved in a new .csv file with the suffix _processed as well as a new timestamp.

4.4 Data visualisation
In order to visualize and plot the measured data correctly, the Matlab script Data_visualization.m is used.
The latter reads all the measurement values from the .csv file. In order to plot the measurements versus
time, the sampling frequency of the measurements is extracted from the .txt file containing the experiment
parameters. In order to plot in [ms], one can simply apply the following formula in order to compute the
time step between each sample:

time_step[ms] =
1

sampling_frequency[Hz]
∗ 1000 (4)

Figure 9 shows the typical data obtained after a test experiment with the following parameters:

• Electrodes sampling frequency: 10[kHz]

• DMD picture time: 10[ms]

• Trigger high time: 1[ms]

• Trigger low time: 16[ms]
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• Number of images: 6

Figure 9: Graph obtained after the projection of 6 images on a photodiode
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5 Tests & results

The approach used in order to test the complete setup composed of the stimulus generator, the electrodes
amplifier and the DMD was to divide it into multiple sub-problems. Initially, each device was handled indi-
vidually with its own dedicated Python script.

The first component addressed was the stimulus generator. The communication between the computer and
the stimulus generator as well as the correct configuration by the python script was tested by connecting an
oscilloscope directly at one of the Sync out output of the stimulus generator. By sending logic signals with
variable periods and visualizing the results on the oscilloscope, one could validate the correct performance
of the device. This test allowed to solve several problems regarding the allocation of the outputs.

Afterwards, the electrode amplifier was tested. Firstly, the good communication with the computer was
assessed by configuring the device with random parameters and then retrieving these parameters using
another function. Next, the validity of the device electrical measurements was assessed. By connecting one
of the outputs of the stimulus generator to an analog input of the electrode amplifier, one could see if the
signal generated corresponds to the signal received and processed by the electrodes amplifier. The result of
such an experiment can be seen in Figure 10.

Figure 10: Experiment of sampling the analog value of a logical signal

Looking at Figure 10, one can see that the signal acquired by the electrodes amplifier corresponds to the
signal generated by the stimulus generator. Indeed, the signal oscillates between 0[V ] and 3.3[V ] which
corresponds to the logic state LOW and HIGH. Furthermore, tests at higher sampling frequencies, around
10[kHz] were conducted in order to determine the limits of the device.

Finally, the last component to be tested was the DMD. Like the other devices, the DMD was initially tested
individually. Once the communication has been properly established, the first aspect carried out concerned
the projection of images. Using a secondary script, image samples were created on the computer to assess
the capabilities of the projection. Figure 11 displays typical images that were uploaded and displayed on the
DMD.
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Figure 11: Images used to assess the capability of the DMD to project grayscale patterns

The correctness of the image projection was evaluated using another setup from the laboratory that has a
camera pointed in the direction of the DMD that allows to visualize with a computer the projected image.

Another aspect investigated was whether the total storage capacity of the DMD corresponds to the theoretical
one computed in section 4.1. Using a function from the DMD library, it turned out that the maximum 8−bits
images that can be stored is 2730, slightly bigger than the computed one. Furthermore, the data rate from
the computer to the DMD can be computed and tested. Since the connection uses a High Speed USB 2.0
cable, the maximum data rate is 480[Mbit/s]. The time it would take to upload 2730 images to the DMD
can be computed as follow:

Time[s] =
#images ·#bits_per_images

Data_rate
=

2730 · 1024 · 768 · 8
480 · 106

= 35.8[s] (5)

It turned out that the real uploading time was situated more around 15[s]. The latter was measured using
a simple timing function in the Python script. Those differences between theoretical values and real values
can be explained by the fact that the images undergo some kind of compression before being uploaded to
the DMD.

Once all the devices operated properly separately, they were connected together and their scripts were
combined. An important aspect was to assess the reaction time of the DMD triggered by the stimulus
generator. This was achieved using a GaP detector pointed towards the direction of the DMD and connected
to an analog input of the electrode amplifier as seen in Figure 12. The detector used for this operation is
the model PDA25K2 from Thorlabs. When triggered by the stimulus generator, the DMD displays an image
which illuminates the detector. The latter responds with an increase in voltage.

Figure 12: Montage with the photodetector connected to an analog input of the electrodes amplifier
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This experiment allowed also to assess the temporal precision of setup. The parameters set and uploaded to
the devices are the following:

• Electrode amplifier sampling frequency: 10[kHz]

• DMD picture time: 10000[µs]

• Stimulus generator frequency: 60[Hz]

• Stimulus generator THIGH : 1000[µs]

The result of such an experiment can be seen in Figure 13 and in Figure 14.

Figure 13: Values obtained after the projection of images on the photodetector

Figure 14: Values obtained after the projection of images on the photodetector with datatips measurements
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Looking at the Xvalues of the datatips in Figure 14, one can observe that it corresponds to the previously
specified parameters:

• DMD picture time: 2119[ms]− 2109[ms] = 10[ms]

• Stimulus generator frequency: 1/(2125[ms]− 2109[ms]) ≈ 60[Hz]

• Stimulus generator THIGH : 2110[ms]− 2109[ms] = 1[ms]

The average time delay between the photodiode response and the signal generator pulses is also an important
factor for the precise execution of this experiment. In order to evaluate this value, the acquired data from the
previous experiment is used with some added post-processing. Figure 15 displays multiple rising edges of the
trigger signal followed by the rise of the photodiode voltage. For clarity purpose, the photodiode signal has
been offset vertically to correspond to the low value of the trigger signal. Since the experiment is performed
at a sampling frequency of 10[kHz], each data point is separated by a time step of 1/10000 [s]. Looking at
Figure 15, one can clearly see that the rising voltage of the photodiode (orange curve) occurs exactly at the
same data point that the rising edge of the stimulus generator (blue curve). Therefore, it is safe to assume
that the time delay between both devices is smaller than 100[µs], which means that all three devices (the
stimulus generator, the electrodes amplifier and the DMD) are very well synchronized. To measure the time
delay even more accurately, the sampling frequency should be further increased in order to have time steps
smaller than 100[µs].

Figure 15: Time delay measurements

Another important point that needs to be investigated is the setup ability to display a large number of images
successively. As it was seen in Section 4.1, the maximum number of images for 1 packet is limited to 2730.
Thus, an other experiment needs to be conducted to determine the behaviour of the setup when projecting
and sampling data with more than one packet of images. For this experiment the same parameters as the
previous one were used and the number of images was 4600. The result of the processed data obtained with
the samples of this experiment can be seen in Figure 16.
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Figure 16: Graph obtained after the projection on the DMD of two packets of images; The first one with
2730 images and the second one with 1880 images

Looking at Figure 16, one can see that the total number of images was divided into two packets. Indeed, as
said in section 4.1, if the number of images exceeds the available memory on the DMD, the experiment will
be performed in separate steps. Here, the first packet contains the maximum number of images, 2730 and
the second packet contains the rest, 4600− 2700 = 1900.

The last test performed on the setup was its ability to project a lot of images (> 5000′) and, at the same
time, having a high sampling frequency on the electrode amplifier. It turned out that the bottle neck of this
experiment is the data transfer from the electrode amplifier to the computer. Indeed, a single measurement
contains 256 · 16[bit] = 4096[bits]. Since a new measurement is available each 1/sampling_frequency [s], it
represents a data rate of 4096 · sampling_frequency [bit/s]. When the sampling frequency exceed 5[kHz],
new measurements are generated faster than the computer can receive and store them. This is the reason
why it was decided to carry out the data processing in a second step, in order to reduce the resources and
time of live data saving as much as possible. Nevertheless, even with this technique, at very high sampling
frequencies, new data was generated faster than the computer can receive and store it. However, the electrode
amplifier is equipped with an internal memory which allows to store the samples before sending them to
the computer. Therefore, when the acquisition of new data is stopped, the device still needs some time to
send the rest of the data to the computer. When dealing with only one packet of images (less than 2730),
this causes no problem. However, when working with many packets, the internal memory of the electrode
amplifier tends to overflow, leading in a loss of data. The solution found to solve this problem is that between
the projection of each packet, the data acquisition as well as the script itself are paused such that the rest
of the data stored on the electrode amplifier memory can be received. The holding time depends on the
sampling frequency. The higher it is, the longer the time between two consecutive packets. This solution
therefore allows the projection of multiple packets at very high sampling frequencies, higher than 10[kHz].
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6 Conclusion

The objective of this project was to develop a solution to connect different devices together in order to
perform excitation by images projection and electrical acquisition of retina samples. The most important
requirement was that the solution must ensure a good synchronization between the images projected by the
DMD and the signal captured by the electrodes amplifier. Moreover, it needed to be robust to the projection
of large quantities of images at high switching rates.

The produced Python scripts fulfill these objectives. Indeed, the setup provides a time delay of less than
100[µs] between the excitation and the response signal. Regarding the image switching rate, we are limited
by the DMD actuation system itself. For 8− bits grayscale images, the maximum rate is 290[Hz]. Another
source of limitation occurs when a high sampling frequency is chosen on the electrodes amplifier. Indeed,
with sampling frequencies higher than 5[kHz], the system is forced to pause between the projection of two
packets of images while the remaining data sampled with the previous packet is sent to the computer. The
higher the sampling frequency, the longer the time required between each packet.

Regarding the potential improvements of these scripts, if a solution is found to improve the data rate between
the electrodes amplifier and the computer, the experiment could run at the maximum switching rate of the
DMD, 290[Hz], without any interruption, even to refill new images. Indeed, the DMD internal memory
could be split into multiple sequences such that while a sequence is being used to project images, the other
one is refilled with new images from the computer. This parallel processing would make it possible to project
more than 10′000 images without any interruption to refill the DMD memory.
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7 Appendices

In the following pages, scripts written for this project can be found in this order:

• The Matlab script allowing to visualize the data file .csv

• The main Python script managing the devices and controlling the experiment parameters

• The Python script allowing to process the raw data to produce data usable by the Matlab script.

• The Python library containing the classes to control the stimulus generator and the electrodes amplifier

• The Python library containing the class to control the DMD



04.01.21 19:14 C:\Users\victo\Py...\Data_visualization.m 1 of 1

 1 clc

 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 3 %%%%%%%%%%%%%% Needs to be modified with the correct file name%%%%%%%%

 4 data_file = 'Experiment_02-Dec-2020_10H-37M_processed_02-Dec-2020_10H-38M.csv';

 5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 6 

 7 % extracting the data

 8 data = readtable(data_file);

 9 size_of_data =size(data)

10 

11 % exatraction of the sampling frequency from the corresponfing .txt file

12 newStr = split(data_file,'_processed');

13 txt_file = newStr(1)+'.txt';

14 fileID = fopen(txt_file,'r');

15 first_line = split(fscanf(fileID,'%s',2),':');

16 sampling_freq = str2double(first_line(2));

17 time_step_in_ms=(1/sampling_freq)*1000;

18 

19 

20 trigger = data.Var257; % the last column of data is the digital in (the trigger)

21 

22 % deterimation of the time axis

23 time = transpose(0:time_step_in_ms:(length(trigger)-1)*time_step_in_ms);

24 

25 plot(time, trigger)

26 grid on

27 hold on

28 plot(time, data.Var255)

29 xlabel('time [ms]','FontSize',15) 

30 ylabel('Analog [mV] / Digital [0/1]','FontSize',15)

31 legend({'Trigger','Analog A3'})
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