SEMESTER PROJECT

Laboratory of Applied Photonics Devices

Mice ex-vivo retina pI‘OJGCtOI‘ design,
implementation and acquisition synchronization
with electrical electrode array

Supervisor:
Student: Babak RAHMANI
Victor TIBERGHIEN (250380) Professor:

Christophe MOSER

Lausanne, Fall 2020

cPiL

Ecole Polytechnique Fédérale de Lausanne

Contents

1 Introduction 1
2 Optical setup 2
3 Devices 3
3.1 Stimulus Generator 3
3.1.1 Programming 3

3.2 Electrodes amplifier L 4
3.2.1 Programmingol e e e e 4

3.3 Digital Micromirror Device e 5
3.3.1 Programming 5

3.4 Montage 6
4 Overall script 7
4.1 Images preparation Lo e e e e e e e 7
4.2 Images projection & data acquisition L 7
4.3 Data processing e e e 8
4.4 Data visualisation Lo 8
5 Tests & results 10
6 Conclusion 15
7 Appendices 16

List of Figures

0O Ui Wi

= s e e = O
DU W~ O

Complete optical setup L 2
Stimulus generator device Lo 3
Trigger signal oL e 4
Electrodes amplifier e e 4
Digital Micromirror Device and its controller 5
DMD timing in slave mode L 6
Overall montage e 6
Images compilation oL oL 7
Graph obtained after the projection of 6 images on a photodiode 9
Experiment of sampling the analog value of a logical signal 10
Images used to assess the capability of the DMD to project grayscale patterns 11
Montage with the photodetector connected to an analog input of the electrodes amplifier . . 11
Values obtained after the projection of images on the photodetector 12
Values obtained after the projection of images on the photodetector with datatips measurements 12
Time delay measurements L Lo 13

Graph obtained after the projection on the DMD of two packets of images; The first one with
2730 images and the second one with 1880 images 14

1 INTRODUCTION 1

1 Introduction

The objective of this project is to build a setup in order to characterize the electrical responses of an ex-vivo
retina excited by projecting different images on it. The setup requires having a perfect synchronisation
between the projected images and the electrical impulses captured. Indeed, retina neurons response to light
stimulation is very fast, in the order of a few milliseconds. Another important aspect that needs to be
taken into consideration is that the experiment with the ex-vivo retina needs to be done at a relatively high
speed. Consequently, the setup needs to be reliable, without any measurements loss, at high sampling rates.
Moreover, as the experiment with the retina is conducted with large quantities of images (up to 10'000),
the system must be able to manage autonomously the flux of images to be projected by the intended devices.

The following report is divided into multiple sections. First of all, the optical setup as well as the optical
components are briefly introduced. Then, the different electronic devices used for this experiment are presen-
ted: the stimulus generator to control the speed of the experiment by generating a trigger signal, the Digital
Micromirror Device (DMD) to project images on the sample and the electrodes amplifier on which the sample
is placed to capture the electrical responses. Afterwards, the scripts written to control and capture data
from the devices are discussed. Finally, the multiple tests carried out to verify the proper functioning of the
setup as well as their results are discussed.

2 OPTICAL SETUP 2

2 Optical setup

&
N
1] 2,

Figure 1: Complete optical setup

7

v

1. White LED from THORLABS, number MWWHF2. This is the light used for the experiment. It is
coupled to the optical system using a multimode fiber. A white light implies a broad spectrum that
needs to be corrected to avoid chromatic aberrations. Chromatic aberrations occur when different
wavelengths focus at different distances.

2. Achromatic Doublet, f=40[mm] from THORLABS, number AC254-040-A-ML. This lens collimates the
light coming from the fiber on the surface of the DMD. Also, this specific lens allows to correct the
chromatic aberrations by using two lenses to bring together the blue light and the red light.

3. Digital Micromirror Device (DMD), see section 3.3.

4. Tube lens, f = 200[mm] THORLABS, number TTL200-A. Those lenses are designed to be used with
infinity-corrected objectives.

5. Cube-Mounted Non-Polarizing Beamsplitter from THORLABS, number CCM1-BS013/M. Beamsplit-
ters are used to split a light beam into two separate beams or can be also used in reverse to combine
two beams into a single one. In this particular case, it is used to project images on the sample and at
the same time, to observe it with a CCD camera.

6. Objective 2.52/0.06 infinity corrected from Zeiss. In an infinity corrected optical system, the image
created by the objective is set to infinity. A specific tube lens needs to be placed after the objective in
order to produce an intermediate image.

7. Achromatic Doublet f = 45[mm] from THORLABS, number AC254-045-A-ML. Lens to couple the
camera to the optical system.

8. CCD Camera, 1024x768 resolution from THORLABS, number DCU223M. Camera used to observe the
sample.

3 DEVICES 3

3 Devices

3.1 Stimulus Generator

In order to generate simultaneous stimulus to synchronize the DMD and the electrodes amplifier, one can use
a stimulus generator. The model used for the setup is the STG4004 from Multichannel Systems. The device
is able to generate stimulus with all kind of shapes and amplitudes. It can generate analog or transistor-
transistor logic (TTL) pulses. In the context of this experiment, TTL signals were used such that they can
trigger the DMD and the electrodes amplifier. Those pulses are made of two states: logic state HIGH which
corresponds to a 3.3[V] output signal and a logic state LOW which corresponds to a 0[V] output signal.
The main parameters that can be configured are the O Nyjpme, the OF Fyjp,e as well as the number of pulses.
Those can be visualized in Figure 3.

The STG4004 is connected to the computer via USB2.0 and connected to the DMD and electrodes amplifier
via two Sync Out BNC connectors located at the back of the device. This particular model can generate
stimulus up to 25[kHz].

Figure 2: Stimulus generator device

3.1.1 Programming

The stimulus generator operates in download mode, meaning that the stimulus are first created on the com-
puter and then transferred to the device. Once the transfer is over, the stimulus can be generated either by
pressing the play button on the device or by sending the start command via software with a computer.

The interface between the computer and the STG4004 is achieved via a Python class located in the
MCS _devices.py file. The class is made after the inheritance of the class loaded with the Dynamic Link
Library(DLL) file.

When an instance of the class is created, the constructor is automatically called. The latter will first look
for connected devices and make sure that the STG is connected.

Once connected, the stimulus generator is first cleared of previous data. Then, each output is individually
configured. All 4 SYNC OUT outputs are activated, while the analog outputs are deactivated. Then, the
same stimulus is created for the all SYNC OUT outputs according to the desired parameters (Tjow, THigh,
number of repetition). Finally the stimulus is transferred to the device.

A separated command is then sent in order to start the stimulus.

3 DEVICES 4

.
[
[

5

Amplitude

___________ -
Time

Figure 3: Trigger signal

3.2 Electrodes amplifier

The electrodes recording used for the setup is the USB-MEA256-System from Multichannel Systems. It
captures and amplifies the signal coming from the retina thanks to a Microelectrodes array (MEA) composed
of 252 electrodes and 4 reference electrodes as it can be seen in Figure 4. The raw signal coming from the
electodes is then digitalized in real time by the integrated analog / digital converter. The latter being able
to reach a sampling rate of up to 40[kH z] per channel. The voltage range of those electrodes is +3.7[mV]
with 16 bits resolution which corresponds to a resolution of 113[nV]. Additionally, the device is equipped
with digital inputs than can be used to receive the triggering signal coming from the stimulus generator in
order to synchronise the recording with the stimulation of the sample.

Figure 4: Electrodes amplifier

3.2.1 Programming

The interface between the computer and the electrodes amplifier is achieved through the python class
MCS MEA located in the MCS _devices.py file. At the creation of an instance, the constructor firstly
check if the device is connected to the computer and if it is the case, it connects to it.

Afterwards, the device is configured with the desired parameters. First of all, the sampling frequency of the
electrodes is set, it can go from 1[Hz| up to 40[kHz]. Then, the number of channels to activate is chosen.
Here, since we want all 252 electrodes plus 4 analog inputs, all the 256 channels are activated. Furthermore,
the digital input used for the triggering signal is also activated. We end up with a total of 257 values for one
sample. The data format of the measurements is also configured. For the current setup, it is set to unsigned
integers of 16 bits. Then, the buffer needs to be set up. It contains all the samples that have been recorded
but not yet sent to the computer. It’s a kind of waiting queue based on the principle of First In First Out
(FIFO). For this experiment, the queue size is set to hold up to 10% samples which is close to the maximum
available memory.

3 DEVICES 5

Each time a new packet of samples is recorded and sent to the computer, a thread function is automatically
called within the script. A thread function is a function that can be run simultaneously to the main script
when a certain event occurs (here, reception of a new packet). The packet size is configured to contain a
number of samples of half the sampling frequency, #samples = sampling _frequency/2. It means that
during the recording process, the thread function is called every 500[ms]. This value has been found after
several tries and failures. The callback function receives a single table, data| |, containing the measurements
coming from the device and saves it in the .csv file. The structure of data| |, can be seen in Table 1.

\ Samples H Analog 0 \ Analog 1 \ \ Analog 255 \ Digital IN \
Sample 1 data|0] data|1] data[255] data[256]
Sample 2 data[257] | data[258] data[512] datal[513]
Sample 10 || data[2570] | data[2571] data[2825] | data[2826]

Table 1: Structure of an array sent by the electrodes amplifier

3.3 Digital Micromirror Device

A digital micromirror device is an array of binary micromirrors that can be actuated individually using an
electrocapacitive actuation. It can also generate grayscale images by toggling on and off the mirrors at high
frequencies determined by pulse-width modulation. The DMD chip used for the experiment is the model
DLP7000BFLP manufactured by Tezras Instrument. It contains 1024 by 768 mirrors that represent the
pixels. Each mirror tilts with angles of +12° relative to the flat surface. This particular model is made to
be used with visible light, that is wavelengths in the range of 400[nm] to 700[nm).

The chip itself comes with a controller that provides an interface with a computer. The model used is the
V4100 board by Vialuz. It allows, among other things, to store images to be displayed as well as tuning
different parameters such as the picture time or the hardware trigger. This particular model has a 16[Gbit] on
board DDR2 RAM intended to store images. The controller enables also the possibility to display grayscale
images of 255 different values (8[bits]). In our configuration, the DMD is controlled via the trigger signal
sent by the stimulus generator. In order to achieve this, one can use the pins TRIGGER_IN and GND
located on the Multi-Purpose I/O Molex connector of the controller.

Figure 5: Digital Micromirror Device and its controller

3.3.1 Programming

The interface between the DMD controller and the computer is achieved through the Dynamic Link Library
alpV42.dll. This file contains all the necessary functions required to configure and operate the DMD. In
order to access those functions, the python class DMD located in the file communication.py is used. This
class is an adaptation and modification of a version made by Matthias Miiller-Schrader in 2015 at ETHZ.

3 DEVICES 6

At the creation of an instance of the class, the constructor looks for the DMD serial number to ensure that
the communication is well established. Then, the DMD needs to be configured in the slave mode. In this
configuration, the DMD projection loop waits for a trigger event before the next picture of the sequence is
displayed. It is also important to define the trigger event. In our case, it was chosen to work with the rising
edge of the triggering signal, that is when the signal goes from 0 to 1 (0[V] to 3.3[V]). Figure 6 displays
how the signal Triggerin triggers the PictureTime. The PictureTime is the time during which a picture is
displayed on the DMD. This is an important parameter that needs to be modified by the user in the main
Python file. The minimum possible PictureTime depends on the format of the images. For binary images
it is 44[us] while for 8 — bits grayscale images it is 3.4[ms]. It turns out to be the limiting factor for the
experiment images frequency.

Synchut: | ARk Putia | |

Trggerine | Actwe Edge [o.f. ALP_EDGE_Risi%g) | |

! Synch Pulve Width | 2lus |
i TriggoerinChel iy Trigiper e Dy

Tome

Figure 6: DMD timing in slave mode

On the DMD, the pictures are organized in sequences. Once a sequence of pictures is created (see Section
4.1), it is uploaded via USB2.0 on the DMD on board RAM. Finally, when the upload is finished, the DMD
can be put in a standby mode, meaning that it waits for the trigger events so that it can display the picture
one after the other. While waiting for trigger events, the script is paused until the end of the sequence. Even
if the script is paused, if a new packet of samples is sent by the electrodes amplifier, the computer will still
be able to process it because the data is treated by a thread function that can run in parallel.

3.4 Montage

|r_’ ‘
—— Trigpet cabley
s LJSH cables

Figure 7: Overall montage

4 OVERALL SCRIPT 7

4 Overall script

4.1 Images preparation

For this experiment, grayscale images are needed. Consequently, each pixel of an image has an 8 — bits value
ranging from 0 to 255. Before uploading the images to the DMD, these need to be compiled in order to be
understood by the DMD. This is achieved by the function import and_compile images(). The latter looks
for a certain type of image extension in a certain folder, for instance .png. Then, knowing the total number
of images, it divides them into several packets such that the number of images in a single package doesn’t
exceed the maximum number of images that the on-board DMD memory can hold. This maximum capacity
can be approximated knowing the on-board RAM of the module:

On-board RAM|bits| B 16 - 10°
#bits per pixel - #pixels in an image 8- (1024 - 768)

#MAX IMAGES = = 2543 images (1)

Finally, each packet containing a list of 2D arrays representing the images needs to be resized. This is
achieved using the function compilePicture located in the file communication.py. The latter transforms each
2D array into a single 1D array and arranges them one after the other. This final resulting 1D array contains
the individual 8 — bits pixels of each image. Its length is equal to: 1024 - 768 - #images in the packet. Figure
8 shows this last step of the compilation.

=
L
|
+
|
|
£
|l
T
1
|
|
|

gl i | iy

Packet 0 compiled = T T OO L OO T L o

Figure 8: Images compilation

4.2 TImages projection & data acquisition

Once all the images are compiled, the data file .csv that will contain all the measurements is created and
prepared to receive incoming data. A timestamp is added to the file in order to keep a trace of when the
experiment was performed.

The script then enters a for loop according to the number of packets required to project all the images.
Next, all the devices need to be configured according to the experiment parameters: the electrodes sampling
frequency, the DMD picture time and the trigger frequency. The number of repetitions of the trigger signal
is given by the number of images in the current packet. Then, all the images contained in the current packet
are uploaded as a sequence to the DMD and the latter is put on standby, waiting for the trigger signal.
The data acquisition is started and finally, the start command is sent to the stimulus generator. The script
starts receiving data from the electrodes amplifier and, at the same time, waits for the end of the sequence
which is signaled by the DMD when all the pictures in the sequence have been projected. Once finished,
the data acquisition is stopped and the DMD memory is freed. Finally, at the end of the loop, the script is
paused again so that all the remaining data on the memory of the electrode amplifier can be properly sent
and stored on the computer before acquiring data of the next packet.

4 OVERALL SCRIPT 8

Once every packet is displayed and all the corresponding data is stored in the data file, all the devices
are properly disconnected and a .tzt file containing the experiment paramerters is created with the same
timestamp as the data file.

4.3 Data processing

The data containing the measurement needs some processing before being able to plot it. At first, the data
was processed in real time, in the callback function, as it was coming from the electrodes amplifier. Each time
a new set of samples arrived, it would convert it and reshape the array such that each line correspond to an
individual sample. The problem with that method is that when the sampling frequency of the measurement
exceeds a certain threshold situated around 1[kH z], the amount of samples into a single set is so large that
the computer doesn’t have the time to fully process this set before the next one arrives. This resulted in
incomplete data .csv file with incomplete or missing samples.

The solution found for this problem is that instead of processing that data in real time as it comes, the data
is now saved directly in the file without any kind of processing. The arrays dataf] containing the sets of
samples are saved line by line in the file. This allows to reduce the computing time and thus to save the
incoming data at high frequencies without any loss. However, at the end of the experiment, the data still
needs to be processed. This is achieved using a separated script process data.py.

The script performs two different steps simultaneously. The first step is to reshape the data file such that
each line corresponds to a different sample and not a whole set as it is the case when the data is coming from
the electrode amplifiers. The second step is to convert the raw numerical values of the measurements such
that they can be expressed in Volts. The data format used to encode the measurements is wint16, which
corresponds to 16 bits unsigned integers that go from 0 to 2'6 = 65536. A sample consists of three different
kinds of measurement: there are 252 analog values coming from the MEA with a range of +3.7mV, 4 analog
values from the additional analog inputs with a range of +4.096V and 1 digital value coming from the digital
IN. Only the analog values need to be converted. The following formulas illustrate how the conversion is

performed:
raw _value

MEA value[mV] = GEERE

(2-3.7)—3.7 (2)

l
Analog _value[V] = % - (2 4.096) — 4.096 (3)

The result of this processing is saved in a new .cswv file with the suffix _processed as well as a new timestamp.

4.4 Data visualisation

In order to visualize and plot the measured data correctly, the Matlab script Data_ visualization.m is used.
The latter reads all the measurement values from the .csv file. In order to plot the measurements versus
time, the sampling frequency of the measurements is extracted from the .¢xt file containing the experiment
parameters. In order to plot in [ms], one can simply apply the following formula in order to compute the
time step between each sample:

1

. . _ 1000 4
Zme_s ep[mS] Sampling_frequency[Hz} * ()

Figure 9 shows the typical data obtained after a test experiment with the following parameters:
e Electrodes sampling frequency: 10[kH z]
e DMD picture time: 10[ms]
e Trigger high time: 1[ms]

o Trigger low time: 16[ms]

4 OVERALL SCRIPT

o Number of images: 6

E=d

o
7]
T

[
-
.

Anatog [mv] / Digital [01]

Bt ——

o — T b —a

2
|
i

S Fii] F1=0 TG Fat] e Fatoe] T Faloe] TN T
tirrses i)

Figure 9: Graph obtained after the projection of 6 images on a photodiode

5 TESTS & RESULTS 10

5 Tests & results

The approach used in order to test the complete setup composed of the stimulus generator, the electrodes
amplifier and the DMD was to divide it into multiple sub-problems. Initially, each device was handled indi-
vidually with its own dedicated Python script.

The first component addressed was the stimulus generator. The communication between the computer and
the stimulus generator as well as the correct configuration by the python script was tested by connecting an
oscilloscope directly at one of the Sync out output of the stimulus generator. By sending logic signals with
variable periods and visualizing the results on the oscilloscope, one could validate the correct performance
of the device. This test allowed to solve several problems regarding the allocation of the outputs.

Afterwards, the electrode amplifier was tested. Firstly, the good communication with the computer was
assessed by configuring the device with random parameters and then retrieving these parameters using
another function. Next, the validity of the device electrical measurements was assessed. By connecting one
of the outputs of the stimulus generator to an analog input of the electrode amplifier, one could see if the
signal generated corresponds to the signal received and processed by the electrodes amplifier. The result of
such an experiment can be seen in Figure 10.

=g

[]
vl

o]

A s 07)

Sampia &

Figure 10: Experiment of sampling the analog value of a logical signal

Looking at Figure 10, one can see that the signal acquired by the electrodes amplifier corresponds to the
signal generated by the stimulus generator. Indeed, the signal oscillates between 0[V] and 3.3[V] which
corresponds to the logic state LOW and HIGH. Furthermore, tests at higher sampling frequencies, around
10[kH z] were conducted in order to determine the limits of the device.

Finally, the last component to be tested was the DMD. Like the other devices, the DMD was initially tested
individually. Once the communication has been properly established, the first aspect carried out concerned
the projection of images. Using a secondary script, image samples were created on the computer to assess
the capabilities of the projection. Figure 11 displays typical images that were uploaded and displayed on the
DMD.

5 TESTS & RESULTS 11

Figure 11: Images used to assess the capability of the DMD to project grayscale patterns

The correctness of the image projection was evaluated using another setup from the laboratory that has a
camera pointed in the direction of the DMD that allows to visualize with a computer the projected image.

Another aspect investigated was whether the total storage capacity of the DMD corresponds to the theoretical
one computed in section 4.1. Using a function from the DMD library, it turned out that the maximum 8 —bits
images that can be stored is 2730, slightly bigger than the computed one. Furthermore, the data rate from
the computer to the DMD can be computed and tested. Since the connection uses a High Speed USB 2.0
cable, the maximum data rate is 480[Mbit/s]. The time it would take to upload 2730 images to the DMD
can be computed as follow:

_ #timages - #bits_per_images 2730 -1024 - 768 - 8

Timels] = Data_rate = mo.aon - oo8l 5)

It turned out that the real uploading time was situated more around 15[s]. The latter was measured using
a simple timing function in the Python script. Those differences between theoretical values and real values
can be explained by the fact that the images undergo some kind of compression before being uploaded to
the DMD.

Once all the devices operated properly separately, they were connected together and their scripts were
combined. An important aspect was to assess the reaction time of the DMD triggered by the stimulus
generator. This was achieved using a GaP detector pointed towards the direction of the DMD and connected
to an analog input of the electrode amplifier as seen in Figure 12. The detector used for this operation is
the model PDA25K2 from Thorlabs. When triggered by the stimulus generator, the DMD displays an image
which illuminates the detector. The latter responds with an increase in voltage.

—T S]

(_oin

‘Generaior

)

-.'-C

——— Trigpe’ cakbles
LISH cabley
Analag cabile

Figure 12: Montage with the photodetector connected to an analog input of the electrodes amplifier

5 TESTS & RESULTS 12

This experiment allowed also to assess the temporal precision of setup. The parameters set and uploaded to
the devices are the following:

e Electrode amplifier sampling frequency: 10[kH z]
e DMD picture time: 10000[us]

e Stimulus generator frequency: 60[H z]

e Stimulus generator Trrgm: 1000[us]

The result of such an experiment can be seen in Figure 13 and in Figure 14.

R
— T
[iy
[2hee
==
[
=
B fi - I E | ks -
L
5‘ |
E
E arl
)
o= —_— i —tT— ——
| i i i i i i
Far - 1l X E Ty i i N ik il

B [z

Figure 13: Values obtained after the projection of images on the photodetector

13k . | (— Trge= J
| { L riy A
[ig]
:'\-'nr\q. —
(=3
E -0 B
Sl'l'l." o
§| Sl K e XM
E LI L ¥ 0O
—_— E— L] =
gﬂ!ﬁ o
nos -
[-L 5] X Fifsd L HW L]
V.0 bl Wi
o L II L]
FHD Fiaf I g ne
ENTi [I‘I'r:l-]

Figure 14: Values obtained after the projection of images on the photodetector with datatips measurements

5 TESTS & RESULTS 13

Looking at the X, qiues Of the datatips in Figure 14, one can observe that it corresponds to the previously
specified parameters:

e DMD picture time: 2119[ms] — 2109[ms] = 10[ms]
e Stimulus generator frequency: 1/(2125[ms] — 2109[ms]) ~ 60[H z]
e Stimulus generator Trrgm: 2110[ms] — 2109[ms] = 1[ms]

The average time delay between the photodiode response and the signal generator pulses is also an important
factor for the precise execution of this experiment. In order to evaluate this value, the acquired data from the
previous experiment is used with some added post-processing. Figure 15 displays multiple rising edges of the
trigger signal followed by the rise of the photodiode voltage. For clarity purpose, the photodiode signal has
been offset vertically to correspond to the low value of the trigger signal. Since the experiment is performed
at a sampling frequency of 10[kHz], each data point is separated by a time step of 1/10000 [s]. Looking at
Figure 15, one can clearly see that the rising voltage of the photodiode (orange curve) occurs exactly at the
same data point that the rising edge of the stimulus generator (blue curve). Therefore, it is safe to assume
that the time delay between both devices is smaller than 100[us], which means that all three devices (the
stimulus generator, the electrodes amplifier and the DMD) are very well synchronized. To measure the time
delay even more accurately, the sampling frequency should be further increased in order to have time steps
smaller than 100[us].

R
Sl i

ik 2] :'I 1

Arelog iy

Figure 15: Time delay measurements

Another important point that needs to be investigated is the setup ability to display a large number of images
successively. As it was seen in Section 4.1, the maximum number of images for 1 packet is limited to 2730.
Thus, an other experiment needs to be conducted to determine the behaviour of the setup when projecting
and sampling data with more than one packet of images. For this experiment the same parameters as the
previous one were used and the number of images was 4600. The result of the processed data obtained with
the samples of this experiment can be seen in Figure 16.

5 TESTS & RESULTS 14

o

-

o]

S by [r] f Degitad]

Ll [rns] i

Figure 16: Graph obtained after the projection on the DMD of two packets of images; The first one with
2730 images and the second one with 1880 images

Looking at Figure 16, one can see that the total number of images was divided into two packets. Indeed, as
said in section 4.1, if the number of images exceeds the available memory on the DMD, the experiment will
be performed in separate steps. Here, the first packet contains the maximum number of images, 2730 and
the second packet contains the rest, 4600 — 2700 = 1900.

The last test performed on the setup was its ability to project a lot of images (> 5000") and, at the same
time, having a high sampling frequency on the electrode amplifier. It turned out that the bottle neck of this
experiment is the data transfer from the electrode amplifier to the computer. Indeed, a single measurement
contains 256 - 16[bit] = 4096[bits]. Since a new measurement is available each 1/sampling _frequency [s], it
represents a data rate of 4096 - sampling _frequency [bit/s]. When the sampling frequency exceed 5[kH z],
new measurements are generated faster than the computer can receive and store them. This is the reason
why it was decided to carry out the data processing in a second step, in order to reduce the resources and
time of live data saving as much as possible. Nevertheless, even with this technique, at very high sampling
frequencies, new data was generated faster than the computer can receive and store it. However, the electrode
amplifier is equipped with an internal memory which allows to store the samples before sending them to
the computer. Therefore, when the acquisition of new data is stopped, the device still needs some time to
send the rest of the data to the computer. When dealing with only one packet of images (less than 2730),
this causes no problem. However, when working with many packets, the internal memory of the electrode
amplifier tends to overflow, leading in a loss of data. The solution found to solve this problem is that between
the projection of each packet, the data acquisition as well as the script itself are paused such that the rest
of the data stored on the electrode amplifier memory can be received. The holding time depends on the
sampling frequency. The higher it is, the longer the time between two consecutive packets. This solution
therefore allows the projection of multiple packets at very high sampling frequencies, higher than 10[kH z].

6 CONCLUSION 15

6 Conclusion

The objective of this project was to develop a solution to connect different devices together in order to
perform excitation by images projection and electrical acquisition of retina samples. The most important
requirement was that the solution must ensure a good synchronization between the images projected by the
DMD and the signal captured by the electrodes amplifier. Moreover, it needed to be robust to the projection
of large quantities of images at high switching rates.

The produced Python scripts fulfill these objectives. Indeed, the setup provides a time delay of less than
100[us] between the excitation and the response signal. Regarding the image switching rate, we are limited
by the DMD actuation system itself. For 8 — bits grayscale images, the maximum rate is 290[H z]. Another
source of limitation occurs when a high sampling frequency is chosen on the electrodes amplifier. Indeed,
with sampling frequencies higher than 5[kH z], the system is forced to pause between the projection of two
packets of images while the remaining data sampled with the previous packet is sent to the computer. The
higher the sampling frequency, the longer the time required between each packet.

Regarding the potential improvements of these scripts, if a solution is found to improve the data rate between
the electrodes amplifier and the computer, the experiment could run at the maximum switching rate of the
DMD, 290[H z|, without any interruption, even to refill new images. Indeed, the DMD internal memory
could be split into multiple sequences such that while a sequence is being used to project images, the other
one is refilled with new images from the computer. This parallel processing would make it possible to project
more than 10’000 images without any interruption to refill the DMD memory.

7 APPENDICES 16

7 Appendices

In the following pages, scripts written for this project can be found in this order:
e The Matlab script allowing to visualize the data file .csv

e The main Python script managing the devices and controlling the experiment parameters

The Python script allowing to process the raw data to produce data usable by the Matlab script.

The Python library containing the classes to control the stimulus generator and the electrodes amplifier

The Python library containing the class to control the DMD

04

.01.21 19:14 C:\Users\victo\Py...\Data visualization.m 1 of

O ~J o U b W N

[USIRN VR O RN \C RN \C RN NO RN \ O RN \C RN NO RN \ O RN \C RN O R e I e e e e R e)
= O W 00 J o0y Ul d WNE O WOW-To U WNhE O

clc

©000000009000000000090090900909000090000900090009090909090909090900900000000000000000000
OO0OO0O0OO0OOOOOODODODOOOODODODODODODOOOOODODODODODOOOODODODODODODOOOODODODODODODODODOODODODODODODOOOODODODOOOO©O©O™O
$5%%%%%%%%%%%% Needs to be modified with the correct file name$%$%%%%%%

data file = 'Experiment 02-Dec-2020 10H-37M processed 02-Dec-2020 10H-38M.csv;
0000000000 000000000 0 0000000000000 00 00000000000000000000O0O0 000000000

o)

% extracting the data

data = readtable(data file);

size of data =size(data)

% exatraction of the sampling frequency from the corresponfing .txt file
newStr = split(data file,' processed');

txt file = newStr(l)+ .txt';

fileID = fopen(txt file,'r'");

first line = split(fscanf(filelID,'%s',2),"':");

sampling freq = str2double(first line(2));

time step in ms=(1/sampling freq)*1000;

Q

trigger = data.Var257; $ the last column of data is the digital in (the trigger)

% deterimation of the time axis
time = transpose(0:time step in ms: (length(trigger)-1)*time step in ms);

plot (time, trigger)

grid on

hold on

plot (time, data.Var255)

xlabel ("time [ms]', 'FontSize',15)

ylabel ('"Analog [mV] / Digital [0/1]' 'FontSize',15)
legend ({'Trigger', "Analog A3'})

File - C:\Users\victo\PycharmProjects\LAPD lab\experimentv2.py

l mmrn

2 Laboratory of Applied Photonics Devices - EPFL

3 Fall 2020

4 Victor Tiberghien

5

6 Main script that works in those main parts:

7 - Makes sure that all three devices are connected (Stimulus generator, electrodes amplifier and DMD)
8 - First, it extracts the images from a directory and compiles them

9 - Configure the DMD with the wanted parameters (slave mode, picture time,...)

10 - Configure the electrodes amplifier (MEA256) by setting up the trigger signal and the outputs

11 - Configure the stimulus generator (STG4004) with defined pulses duration and number of repetition
12 - Start the acquisition of the MEA256. 256 electrodes (analog) values + 1 trigger (digital) value
13 - Start the sequence of trigger pulses by the STG4004

14 - Finally the program saves the raw data in a csv file "electrode ... raw.csv"

15 - The data needs then to be processed with the script process data.py

16

17 mme

18 import communication
19 import MCS_devices

20 import time

21 from PIL import Image
22 import numpy as np

23 import glob

24 import math

25 import sys

26

27 MAX IMAGES MEMORY = 2730

28

29

30 def import bin file():

31 print ("Importing images...")

32 print ("This might take a while...")

33 images = np.fromfile("train labelsF.bin", dtype='B")

34 nbr of images= int(len(images)/(1024*768))

35 print (nbr of images, " images detected")

36 number of packages = math.ceil (nbr_of images / MAX_ IMAGES_MEMORY)

37 print ("Number of packages needed: ", number of packages)

38 list_of seq = [None] * number of packages

39 name_of seq = [None] * number of packages

40 for k in range (number of packages):

41 name_of seqlk] = 'seq' + str(k)

42 k seq = images[(k *(1024*768)* MAX IMAGES MEMORY): ((k + 1)*(1024*768) * MAX IMAGES MEMORY)]
43 print ("Number of images in this packet is ", int(len(k seq)/(1024*768)))
44 list of seql[k] = k seq

45 print ("Package", (k + 1), "over", number of packages, "completed")
46 image print = k seq[(1024*768)*3:4*(1024*768)]

47 image print.resize(768,1024)

48 imgagee = Image.fromarray(image print)

49 imgagee.save ('table.png"')

50

51 return list of seq, name of seq, nbr of images

52

53

54 def import and compile images():

55 filelist = glob.glob(parameters|["images directory"])

56 print ("Importing images...")

57 print ("This might take a while...")

58 images = np.array([np.array(Image.open(fname)) for fname in filelist], dtype=np.uint8)
59 nbr of images = int(len(images))

60 print (nbr of images, " images detected")

61 number of packages = math.ceil(len(images) / MAX IMAGES_ MEMORY)

62 print ("Number of packages needed: ", number of packages)

63 list of seq = [None] * number of packages

64 name of seq = [None] * number of packages

65 for k in range (number of packages):

66 name_of seqlk] = 'seq' + str(k)

67 k seq = images|[(k * MAX IMAGES MEMORY): ((k + 1) * MAX IMAGES MEMORY)]
68 print ("Number of images in this packet is ", len(k_seq))

69 list of seq[k] = communication.compilePicture(k seq, int(len(k_seq))
70 print ("Package", (k + 1), "over", number of packages, "completed")
71

Page 1 of 3

File - C:\Users\victo\PycharmProjects\LAPD lab\experimentv2.py

72 return list of seq, name_of seq, nbr of images

73

74

75 def save_ experiment parameters (parameters_out):

76 with open(parameters_out["file name"], 'w') as f:

77 print ("electrodes_sampling freq[Hz]: ", parameters_out["electrodes_ sampling freq[Hz]"], file=f)
78 print ("trigger freq[Hz]: ", parameters_out["trigger freq[Hz]"], file=f)

79 print ("trigger Thigh[us]: ", parameters_out["trigger Thigh[us]"], file=f)

80 print ("trigger Tlow[us]: ", parameters_out["trigger Tlow[us]"], file=f)

81 print ("images directory: ", parameters_out["images directory"], file=f)

82 print ("DMD_Picture_ time[us]: ", parameters_out["DMD Picture time[us]"], file=f)
83 print ("nbr of images: ", parameters_out["nbr of images"], file=f)

84 print ("Data of this packet saved")

85

86

87 generator = MCS_devices.MCS_STG()
88 recorder = MCS devices.MCS MEA (MCS devices.McsBusTypeEnumNet.MCS USB_BUS)
89 dmd = communication.DMD ()

90

91 parameters = dict()

92 ########## Parameters to complete #####H#H#H##H#

93 parameters["electrodes_ sampling freq[Hz]"] = 10000

94 parameters["trigger freq[Hz]"] = 60

95 parameters["images_directory"] = 'images/*.png'

96 parameters["DMD Picture time[us]"] = 10e3

QT ###AAHHAAHHAAHRAAAHRAAHRAAHHAAHRAAHRAAHREAAS

98

99 if parameters["DMD Picture time[us]"] > (l/parameters["trigger freq[Hz]"])*le6:
100 print ("DMD picture time bigger than T not possible")

101 print ("The program will close")

102 input ("Press enter to close the program...")

103 sys.exit ()

104

105 list_of_ sequences, name_of sequences, parameters["nbr of images"] = import_and compile_images()
106 nbr_of packets = int(len(list_of_ sequences))

107

108 # configuration of the electrodes amplifier

109 recorder.file to save data()

110 recorder.recorder_settings (parameters|["electrodes_sampling freq[Hz]"])

111

112 # for loop that will send and record batches of 2730 images (maximum number of images, the DMD can hold)
113 for i in range (nbr of packets):

114 nbr images in this packet = int(len(list of sequences[i])/(768*1024))

115

116 # configuration of the DMD with the wanted parameters

117 dmd.controlProj ('ALP_PROJ MODE', 'ALP_ SLAVE')

118 dmd.controlDev ('ALP_EDGE_RISING')

119 dmd.allocSeq(name of sequences[i], nbr images in this packet)

120 print ("Starting loading image")

121 start_loading = time.time ()

122 dmd.putSeq(name of sequences([i], list of sequences[i])

123 print ("The transfer took", (time.time()-start loading), "seconds")

124 print ("All image loaded")

125 dmd.timingSeq(name_of_ sequences[i], int(parameters["DMD Picture time[us]"]))

126

127 # configuration of the stimulus generator

128 parameters["trigger Thigh[us]"] = 1000

129 parameters["trigger Tlow[us]"] = int ((1/ parameters["trigger freqg[Hz]"])*1le6) - 1000

130 generator.trigger settings(parameters["trigger Tlow[us]"], parameters["trigger Thigh[us]"],
nbr images_in_ this packet)

131

132 # Beginning of the acquisition by the electrodes amplifier

133 if (i==0):

134 recorder.StartDacq()

135 else:

136 recorder.SendStartDacq()

137

138 # Start the DMD, it will wait for a trigger comming from the stimulus generator

139 dmd.startProj (name_of_ sequences[i])

140 time.sleep (1)

141

Page 2 of 3

File - C:\Users\victo\PycharmProjects\LAPD lab\experimentv2.py

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
lel
162

Sending the "start"” command to the stimulus generator
generator.start_trigger()
start trigger = time.time ()

dmd.waitProj () #pauses the script until the actually playing sequence has finished
dmd. freeSeq(name of sequences[i])

time.sleep (5* (parameters["trigger Thigh[us]"]+parameters["trigger Tlow[us]"])/le6)
recorder.SendStopDbacq ()
time.sleep (int (parameters|["electrodes sampling freq[Hz]"]/300))

print ("Sequence", (i + 1), "over", nbr of packets, "displayed")

parameters["file name"] = recorder.get_file name ()
save experiment parameters(parameters)

input ("Press enter when all the data is arrived...")
recorder.StopDacq

recorder.Disconnect ()

generator.Disconnect ()

dmd. free ()

Page 3 of 3

File - C:\Users\victo\PycharmProjects\LAPD lab\process_ data.py

i

Laboratory of Applied Photonics Devices - EPFL
Fall 2020
Victor Tiberghien

Script that process the raw data generated by the main script experimentv2.py
- input: name of the raw .csv file on line 52

O J o U W N

- output: .csv file in the working directory "electrode ... processedcsv"

e}

10 mmmn

11

12 import csv

13 from datetime import datetime

14

15

16 def save data(electrodes data, file to save):

17 with open(file to_save, mode='a', newline='') as csv_file:
18 writer = csv.writer(csv_file)

19 row of data = electrodes data

20 writer.writerow(row of data)

21

22

23 def data treatment(file to open):

24 today = datetime.today ()

25 now = today.strftime ("%d-%b-%Y_ $HH-%MM")

26 processed _time = 'processed ' + now

27 file to save = file to open.replace('raw', processed time)
28

29 with open(file_to open, newline='') as csvfile:

30 spamreader = csv.reader(csvfile, delimiter=',")

31 row_nbr=0

32 print ("Processing...")

33 for row in spamreader:

34 data = row

35 if len(row)%$257==0:

36 sample = int (len(row) /257)

37 for j in range (0, sample):

38 data_to_save = [None] * 257

39 for k in range (0, 257):

40 if 0 <= k <= 251:

41 data_to_savel[k] = (float(data[(j * 257) + k])/(65535/7.4))-3.7
42 if 252 <= k <= 255:

43 data_to_savel[k] = ((float(datal(j * 257) + k])/(65535/8192))-4096)/1000
44 if k == 256:

45 data to savel[k] = float(datal(j * 257) + k])
46 save_data(data to_save, file to save)

47 elif row _nbr != 0:

48 print ("missing data")

49 row_nbr = row_nbr+l

50 print ("Processing done!")

51

52

53 file_name = 'Experiment 03-Dec-2020_12H-54M raw.csv'

54 data_treatment (file name)

55

Page 1 of 1

File - C:\Users\victo\PycharmProjects\LAPD lab\MCS devices.py

i

1
2 Laboratory of Applied Photonics Devices - EPFL
3 Fall 2020

4 Victor Tiberghien

5

6

7

8

Module that interfaces with the devices from Multichannels systems:
- Stimulus Genereator, STG4004
- Microelectrodes array, USB-MEA256
9
10 mre
11 import clr
12 import os
13 from System import Action
14 from System import *
15 import System
16 import sys
17 import csv
18 import time
19 import ctypes
20
21
22 path = str(repr(os.getcwd()))+'\\\McsUsbNet.dll'
23 path = path.replace("'",'")
24 dll1 ref = System.Reflection.Assembly.LoadFile (path)
25
26 from Mcs.Usb import CMcsUsbListNet
27 from Mcs.Usb import DeviceEnumNet
28
29 from Mcs.Usb import CMeaDeviceNet
30 from Mcs.Usb import McsBusTypeEnumNet
31 from Mcs.Usb import DataModeEnumNet
32 from Mcs.Usb import SampleSizeNet
33
34 from Mcs.Usb import CStg200xDownloadNet
35 from Mcs.Usb import McsBusTypeEnumNet
36 from Mcs.Usb import STG_DestinationEnumNet
37 from datetime import datetime
38
39
40 # class that controls that interface with the stimulus generator
41 class MCS_STG(Cstg200xDownloadNet) :

42 def init_ (self):

43 self.USB location = self.looking for_ generator()

44 self.Stg200xPollStatusEvent += self.PollHandler;

45 self.Connect (self.USB location)

46

47 def looking_ for_generator(self):

48 deviceList = CMcsUsbListNet (DeviceEnumNet.MCS DEVICE USB) # List of connected MCS devices
49 print ("found %d devices" % (deviceList.Count))

50 for i in range(deviceList.Count): # Scan for USB devices
51 listEntry = devicelList.GetUsbListEntry (i)

52 print ("Device: %s Serial: %s" % (listEntry.DeviceName, listEntry.SerialNumber))
53 if (listEntry.DeviceName == "STG4004"): # Looks for the stimulus generator
54 generator entry = i

55 try:

56 generator entry

57 except:

58 print ("Stimuli generator not detected!")

59 print ("The program will close")

60 input ("Press enter to close the program...")

61 sys.exit ()

62 return devicelList.GetUsbListEntry(generator_entry)

63

64 def PollHandler (self, status, stgStatusNet, index list):

65 print ('$x %s' % (status, str(stgStatusNet.TiggerStatus[0])))

66

67 def get precision(self):

68 voltageRange = self.GetVoltageRangeInMicrovVolt (0);

69 voltageResulution = self.GetVoltageResolutionInMicrovVolt (0);

70 currentRange = self.GetCurrentRangeInNanoAmp (0);

71 currentResolution = self.GetCurrentResolutionInNanoAmp (0) ;

Page 1 of 3

File - C:\Users\victo\PycharmProjects\LAPD lab\MCS devices.py

72 print ('Voltage Mode: Range: %d mV Resolution: %1.2f mV' % (voltageRange / 1000, voltageResulution /
1000.0))

73 print ('Current Mode: Range: %d uA Resolution: %1.2f uA' % (currentRange / 1000, currentResolution /
1000.0))

74

75 def trigger settings(self, Thigh = 100000, Tlow = 100000, nbr of repetition=1):

76 self.ClearSyncData(0);

77 self.ClearSyncData(l);

78 self.ClearSyncData(2);

79 self.ClearSyncDhata(3);

80 amplitude = Array[UIntl6] ([0, 1]) # setup the trigger pulse

81 duration = Array[UInteé4] ([Thigh, Tlow]) # Duration of the low and high in microseconds

82 channelmap = Array[UInt32] ([0, O, 0, O]

83

84 # bitmap of the sync out outputs to activate, 15 corresponds to 1111 which will activate all 4 sync out
outputs.

85 # In order to activate just 3, you have to enter 7 which corresponds to 0111

86 syncoutmap = Array[UInt32] ([15, 0, 0O, 01)

87 repetition = Array[UInt32] ([nbr of repetition, nbr of repetition, nbr of repetition, 0]

88

89 self.SetupTrigger (0, channelmap, syncoutmap, repetition)

90

91 self.SendSyncData (0, amplitude, duration) # Send the pulse configuration to the STG4004

92 self.SendSyncData(l, amplitude, duration)

93 self.SendSyncData (2, amplitude, duration)

94 self.SendSyncData (3, amplitude, duration)

95

96

97 def start trigger(self):

98 self.SendStart (1)

99

100 def disconnect(self):

101 self.Disconnect ()

102

103

104 # class that controls that interface with the electrodes amplifier
105 class MCS_MEA (CMeaDeviceNet) :

106 def init (self, arg):

107 self.USB location = self.looking for recorder()

108 self.ChannelDataEvent += self.OnChannelDatav?2

109 self.ErrorEvent += self.OnError

110 self.Connect(self.USB location)

111 self.previous state = True

112 self.available channels = 0

113 self.file data = 'Experiment n.csv'

114 self.counter = 0

115 self.sampling rate = 5000

116

117 def looking for recorder(self):

118 deviceList = CMcsUsbListNet (DeviceEnumNet.MCS_DEVICE_USB) # List of connected MCS devices

119 print ("found %d devices" % (deviceList.Count))

120 for i in range(deviceList.Count): # Scan for USB devices

121 listEntry = devicelList.GetUsbListEntry (i)

122 print ("Device: %s Serial: %$s" % (listEntry.DeviceName, listEntry.SerialNumber))

123 if (listEntry.DeviceName == "USB-MEA256"): #Looks for the electrodes
amplifier

124 recorder_entry = i

125 try:

126 recorder_entry

127 except:

128 print ("Electrodes amplifier not detected!")

129 print ("The program will close")

130 input ("Press enter to close the program...")

131 sys.exit ()

132 return devicelList.GetUsbListEntry(recorder_entry)

133

134 def OnError(self, msg, info):

135 print (msg, info)

136

137 def get number of available channels(self):

138 self.available channels = self.HWInfo() .GetNumberOfHWADCChannels (0)

Page 2 of 3

File - C:\Users\victo\PycharmProjects\LAPD lab\MCS devices.py

139 print ("Number of channels availible", self.available_ channels)

140

141 # call back function that is called when a new packet of data is ready to be sent

142 def OnChannelDatav2(self, x, cbHandle, numSamples):

143 self.counter = self.counter + 1

144 nbr of samples = int(self.sampling rate/2) # nbr of sample before sending the data

145 data, size = self.ChannelBlock ReadFramesUI1l6(0, nbr of samples, Int32(0))

146 print("Size:", size)

147 print ("size: %d numSamples: %d Data: %04x" % (size, numSamples, datal[O0]))

148 self.save data(self.counter, data)

149

150 def get counter(self):

151 return self.counter

152

153 def recorder settings(self, sampling r):

154 self.sampling rate = sampling r

155 self.SetNumberOfChannels (256)

156 self.EnableDigitalIn(Boolean (True), UInt32(0)) # Enable the Digital-in on the MEA-256

157

158 self.SetDataMode (DataModeEnumNet.Unsigned 1l6bit, O0)

159 self.SetSamplerate (self.sampling rate, 1, 0) # Sample rate in Hz

160 self.EnableChecksum(False, 0)

161 print ("Channels in Block: ", self.GetChannelsInBlock(0)

162 self.SetSelectedData(self.GetChannelsInBlock(0), 1000000, int(self.sampling rate/2), SampleSizeNet.
SampleSizel6Unsigned,

163 self.GetChannelsInBlock(0)

164

165 #creation of the .csv file in which the data will be saved

166 def file to save data(self):

167 self.ClearBuffers()

168 file = 'Experiment n.csv'

169 today = datetime.today ()

170 now = today.strftime ("_%d-%b-%Y_ S$HH-%MM")+' raw'

171 self.file data = file.replace('_n', now)

172 with open(self.file data, mode='w', newline='"') as csv_file: # Creation of the CSV file to save data

173 writer = csv.writer(csv_file)

174

175 def save data(self, image nbr, electrodes_data):

176 with open(self.file data, mode='a', newline='"') as csv_file:

177 writer = csv.writer(csv_file)

178 row_of data = electrodes_data

179 writer.writerow(row of data)

180

181 # returns the name of the data file in order to saved the parameters of the experiment in a corresponding .
txt file

182 def get file name (self):

183 txt_file = self.file data.replace('_raw.csv',6'.txt')

184 return txt_ file

185

186 def disconnect(self):

187 self.StopDacqg()

188 time.sleep(10)

189 self.Disconnect ()

190

Page 3 of 3

File - C:\Users\victo\PycharmProjects\LAPD lab\communication.py

mer

Laboratory of Applied Photonics Devices - EPFL
Fall 2020
Victor Tiberghien

Module that interface with the DMD from Vialux:

DMD model: DLP HI-SPEED V-MODULE
- 0.7” XGA 2x LVDS (VIS) DMD for visible light

9 - ALP-4.2 “high-speed”

10

11 Modified and completed from a version written by Matthias Miiller-Schrader in 2015

12 - https://gitlab.phys.ethz.ch/mohanj/holography/-/blob/096ce42dl8efc5fdedald4as53013a4ctffb3220830/dmd/communication
.oy

13 e

14

15

16 import ctypes

17 from PIL import Image

18 import sys

19 import os

20 import numpy as np

21 from ctypes import *

22

23 ### Constants or controlling arguments, see documentation of ALP-4.2 high speed

24 ALP_DEFAULT=ctypes.c_int (0)

25 ALP_DEVICE NUMBER = ctypes.c_int (2000)

26 ALP_VERSION = ctypes.c int(2001)

27 ALP_TRIGGER_EDGE = ctypes.c_int (2005)

28 ALP_DEV_DISPLAY HEIGHT = ctypes.c_int (2057)

29 ALP_DEV_DISPLAY WIDTH = ctypes.c_int (2058)

30 ALP_AVAIL_MEMORY = ctypes.c_int (2003)

31 ALP_USB_CONNECTION = ctypes.c_int(2016)

32 ALP_PBC_TEMPERATURE = ctypes.c_int (2052)

33 ALP_BITPLANES = ctypes.c_int (2200)

34 ALP_BITNUM = ctypes.c_int(2103)

35 ALP_BIN MODE = ctypes.c int(2104)

36 ALP_PICNUM = ctypes.c_int(2201)

37 ALP_PICTURE_TIME = ctypes.c_int (2203)

38 ALP_ILLUMINATE TIME = ctypes.c_int(2204)

39 ALP_ON_TIME = ctypes.c_int(2214)

40 ALP_OFF TIME = ctypes.c_int(2215)

41 ALP_MIN ILLUMINATE TIME = ctypes.c_int(2212)

42 ALP DATA FORMAT = ctypes.c_int(2110)

1
2
3
4
5
6
7
8

43 ALP TRIGGER IN DELAY = ctypes.c int(2207) # in us
44 ALP MAX TRIGGER IN DELAY = ctypes.c_int(2210) # in us
45

46 ALP DATA BINARY TOPDOWN = ctypes.c int(2)

47 BIT PLANES = ctypes.c_long(8) # before, it was 1!

48

49

50 try:

51 #dmd dil = ctypes.CDLL('1ibDMD/x64/alpVv42.d11")

52 dmd dll = ctypes.CDLL(r'alpVv42.dl1l")

53 except Exception:

54 print ("Error occured while loading DMD-ddl1l")

55 sys.exit ()

56

57

58 ALP _ERR = { #giving better error messages, see otherwise documentation
59 0: 'ALP OK',

60 1001: 'ALP_NOT ONLINE',

61 1002: 'ALP _NOT IDLE',

62 1003: 'ALP_NOT AVAILABLE',

63 1004: 'ALP NOT READY',

64 1005: 'ALP PARM INVALID',

65 1006: 'ALP ADDR INVALID',

66 1007: 'ALP_MEMORY_ FULL',

67 1008: 'ALP SEQ IN USE',

68 1009: 'ALP_HALTED',

69 1010: 'ALP _ERROR INIT',

70 1011: 'ALP_ERROR COMM',

Page 1 of 11

File - C:\Users\victo\PycharmProjects\LAPD lab\communication.py

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

1012:
1013:
1014:
1018:

'ALP_DEVICE REMOVED',
'ALP_NOT CONFIGURED',
'ALP_LOADER VERSION',

ALP_CONTRL_ARGS = {

ALP INQ ARGS = {

def compilePicture (img,

'ALP_ERROR POWER DOWN',

Arguments for AlpSegControl () and AlpProjControl

'ALP BIN MODE' ctypes.c int(2104),
'ALP_DATA FORMAT' ctypes.c_int(2110),
'ALP_FIRSTFRAME' ctypes.c_int(2101),
'ALP_LASTFRAME' ctypes.c_int(2102),
'ALP_SEQ REPEAT' ctypes.c _int (2100),
'ALP_PROJ MODE' ctypes.c _int (2300),
'ALP_PROJ_ INVERSION' ctypes.c _int (2306),
'ALP_PROJ_UPSIDE_DOWN' ctypes.c_int(2307),
'ALP MASTER' ctypes.c _int (2301),
'ALP_SLAVE' ctypes.c _int (2302),
'ALP_ DEFAULT' ctypes.c_int (0),
'NOT_ALP DEFAULT' ctypes.c_int (1),
'ALP_EDGE_FALLING' ctypes.c_int (2008),
'ALP_EDGE_RISING' ctypes.c_int (2009),
'ALP_BIN NORMAL' ctypes.c int(2105),
'ALP_BIN UNINTERRUPTED' ctypes.ciint(2106h

1200 'ALP_PROJ_ACTIVE',

1201 'ALP_PROJ_IDLE',

2301 'ALP_MASTER',

2302 'ALP_SLAVE',

2008 'ALP_EDGE_FALLING',

2009 '"ALP_EDGE_RISING',

2105 '"ALP_BIN_NORMAL',

2106 : 'ALP_BIN UNINTERRUPTED',

0 : 'ALP DATA MSB ALIGN',

1 : 'ALP DATA LSB ALIGN',

2 : 'ALP_DATA BINARY TOPDOWN',
3 '"ALP_DATA BINARY BOTTOMUP',

nbr images):
print ("Compiling images...")

if isinstance(img, np.ndarray) and img.ndim == 2:
img = [img]

tArray = np.zeros(nbr images*1024*768, dtype='B')

image_counter = 0

for arr in img:

arr.resize(1l, (1024 * 768)
tArray[image counter*1024*768: (image counter+l)*1024*768] = arr
image counter = image counter + 1
string = '\rProgress: ' + str(int (100 * image counter / len(img))) +
sys.stdout.write(string)

print('")

print (int (len(tArray)
return tArray

/ 786432), "images compiled in this package")

class DMD() :

" Cclass to communicate with the DMD.

Each instance of this class can communicate with one DMD.
During the initialisation, it tries to connect to the next aviable DMD.
It is also possible to connect to a special DMD,

After the usage, the DMD should be released using the DMD.free () method.

mwer

v

3
]

specified by its serial number.

Page 2 of 11

File - C:\Users\victo\PycharmProjects\LAPD lab\communication.py

142 def init (self,serial number = ALP_DEFAULT) :

143 #searching for DMD

144 print ('searching for DMD')

145 self.DevID = ctypes.c_int() ### To store the device ID to communicate with DMD
146 self.seq_ids = {} ### To store sequencelDs

147 ret = dmd_dll.AlpDevAlloc(serial number,ALP DEFAULT,ctypes.byref (self.DevID))
148 if ret != 0O:

149 print ("DMD not detected")

150 print ("The program will close")

151 input ("Press enter to close the program...")

152 raise Exception('Communication with DMD failed. Error %s'$ALP_ERR[ret])
153 print ("DMD not found")

154 sys.exit ()

155 else:

156 print ('Connected to DMD')

157 ### determining resulution of DMD (for transforming pictures)

158 self.disp height = ctypes.c_int()

159 ret = dmd dll.AlpDevInquire (self.DevID,ALP DEV DISPLAY HEIGHT,ctypes.byref(self.disp height))
160 self.disp _height = self.disp height.value # used c int.value to get normal py int
161l if ret != 0:

162 raise Exception('Inspecting height failed. Error %s'%ALP_ERR[ret])

163 input ("Press enter to close the program...")

164 self.disp width = ctypes.c int()

165 ret = dmd dll.AlpDevInquire(self.DevID,ALP DEV DISPLAY WIDTH,ctypes.byref(self.disp width))
166 if ret != 0:

167 raise Exception('Inspecting width failed. Error %s'S$ALP_ERR[ret])

168 input ("Press enter to close the program...")

169 self.disp_width = self.disp width.value

170 self.last added seg = None

171 print ("Diplay hight:", self.disp height)

172 print ("Diplay width:", self.disp width)

173

174 def available memory(self):

175 memory=ctypes.c_long()

176 ret = dmd dll.AlpDevInquire(self.DevID, ALP AVAIL MEMORY, ctypes.byref (memory))
177 if ret != 0O:

178 raise Exception('Inspecting left failed. Error %s' % ALP_ERR[ret])

179 input ("Press enter to close the program...")

180 memory = memory.value

181 print ("Memory left on the DMD is: ", int (memory/8),"8 bits images")

182 return memory

183

184 def controlDev(self,tr edge):

185 "rmoAllows to set some properties to the DMD.

186

187 Actually, it is only possible to change the trigger edge, if the DMD is in the
188 slave mode.

189

190 **Implementation of " ‘AlpDevControl'' from the DLL.

191

192 Parameters

193 e

194 tr edge : *int or str*

195 Specifies the trigger edge. Can either be a number as specified in the
196 DMD documentation or the string ' "ALP EDGE RISING'' or '‘ALP EDGE FALLING'"®
197 o

198 if isinstance(tr_edge,str):

199 c_tr edge = ALP_CONTRL_ARGS[tr_ edge]

200 else:

201 c_tr edge = ctypes.c_int(tr_edge)

202 ret = dmd _dll.AlpDevControl (self.DevID,ALP TRIGGER EDGE,c_tr_edge)

203 if ret: # ret == 0 1is everything is ok.

204 raise Exception('Changing trigger edge failed. Error %s'S$ALP_ERR[ret])
205 input ("Press enter to close the program...")

206

207 def free(self):

208 """Allows to eject the DMD manually. Should always be done.

209

210 **Implementation of " ‘AlpDevHalt'' and ' 'AlpDevFree'' from the DLL.

211

212 Raises

Page 3 of 11

File - C:\Users\victo\PycharmProjects\LAPD lab\communication.py

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

def

Exception
- If either '‘AlpDevHalt'' or '‘AlpDevFree'' returns an error
mrrn
#ejecting the DMD manually
retl = dmd_dll.AlpDevHalt (self.DevID)
ret2 = dmd dll.AlpDevFree (self.DevID)
if (retl+ret2==0):
print ('DMD is free')
elif retl != 0:
raise Exception('Halting the DMD failed! Error %s'S3%ALP ERR[retl]
else:
raise Exception('Freeing the DMD failed! Error %s'3%ALP ERR[ret2])

inquireDev (self, conv=True) :
""" Helps inspecting the DMD.

** Implementation of some parts of ' ‘AlpDevInquire’'’ from the DLL.

By default, the values are returned a converted form.
If '‘converted'' 1is False, the values (except from display height and width)
will be returned as they come from the DMD, i.e. as ctypes.c int.

Returns
propts : *dict*
Dictionary containing the properties. Keys are (as string):

-''Device Number'':
Serial number of the DMD (can be used later to connect
to specific DMD by handling it to the initialization routine).

-''ALP Version Number'®
The version number of the ALP device.

- 'Temperature PBC' ' :
The internal temperature of the DMD.
*If " ‘converted'' is True, the temperature will be stated
in degree celsius.*

-''Trigger Edge'’
Whether the DMD reacts to rising or falling triggers.
*If " ‘converted'' is True, the entry will be a string
"ALP EDGE FALLING' or 'ALP EDGE RISING'.*

-''USB Connection’ " :
Whether the connection is ok or removed.
*If '‘converted'' is True, the entry will be a string
"ALP OK' or 'ALP DEVICE REMOVED'.*

-''Display Height''
Height of the DMD (type python [sic] int).

-''Display width'"®
width of the DMD (type python [sic] int).

Raises

Exception:
- If one of the calls of " ‘AlpDevInquire’'’ returns an error.

mwmnr

ditc = {'Display Height':self.disp_height, 'Display Width':self.disp_width}

ditc['Device Number'] = ctypes.c_int(0)
ret = dmd_dll.AlpDevInquire (self.DevID,ALP_DEVICE NUMBER, ctypes.byref (ditc['Device Number']))
ditc['ALP Version Number'] = ctypes.c_int (0)
ret += dmd_dll.AlpDevInquire(self.DevID,ALP_VERSION,ctypes.byref(ditc['ALP_Version_Number']))
ditc['Trigger Edge'] = ctypes.c_int(0)
ret = dmd _dll.AlpDevInquire (self.DevID,ALP_TRIGGER_EDGE, ctypes.byref (ditc['Trigger Edge'l]))
if conv: # See ALP documentation for the numbers

ditc['Trigger Edge']= ALP_INQ ARGS[ditc['Trigger Edge'].value]
ditc['USB_Connection'] = ctypes.c_int (0)

ret += dmd_dll.AlpDevInquire (self.DevID,ALP_USB_CONNECTION,ctypes.byref (ditc['USB_Connection']))
if conv:

ditc['USB_Connection'] = ALP_ERR[ditc['USB_Connection'].value]
ditc['Temperature PBC'] = ctypes.c_int(0)
ret += dmd_dll.AlpDevInquire (self.DevID,ALP PBC_TEMPERATURE, ctypes.byref(ditc['Temperature PBC']))
if conv:

Page 4 of 11

File - C:\Users\victo\PycharmProjects\LAPD lab\communication.py

284 ditc['Temperature PBC'] = ditc['Temperature PBC'].value/256.
285 if ret != 0O:
286 raise Exception('Error occured while inspecting DMD')
287 return ditc
288
289 def allocSeqg(self,name,picNum,data format = 0):
290 "rmoAllocates memory to store later a sequence of pictures
291
292 *#* Implementation of '‘AlpSegAlloc’' and party of '‘AlpSegControl’’ from the DLL.
293
294 Parameters
295 e
296 name : *any type that can be key for a dict*
297 Name for the sequence. It can be accessed by DMD.seq ids[name]
298 picNum : *int*
299 The number of XGA pictures belonging to the sequence.
300 Could be limited by memory (but unlikely).
301 data format : *opt, int from {0,1,2,3}*
302 Specifies the data format for the pictures of the sequence.
303 Other modules are designed for the default (Bitplanes, row 0 first).
304 See the documentation of the ALP library for more details (default is
305 ALP DATA BINARY TOPDOWN) . Integers will be converted to ctypes.c int
306
307 Raises
308 e
309 Exception:
310 - If either '‘AlpSecAlloc’' or "‘AlpSecControl’’ returns an error.
311 e
312
313 seqID = ctypes.c_int()
314 C _picNum = ctypes.c_long(picNum)
315 ret = dmd dll.AlpSegAlloc(self.DevID,BIT PLANES,c picNum,ctypes.byref (seqlD))
316 if ret != 0:
317 raise Exception('Allocation of memory failed. Error $%s'Sret)
318 else:
319 print ('Successfully allocated memory for sequence %s'$%$name)
320 self.seq _ids[name] = seqID ### All sequence IDs are stored in this dict.
321 self.last added seqg = name
322 c _data_ format = ctypes.c_int(data_ format) # See ALP Documentation for other formate
323 #ret = dmd dll.AlpSeqControl (self.DevID,seqID,ALP DATA FORMAT,c data format
) <
324 if ret != 0:
325 raise Exception('Changing data format to allocate sequence %s failed. Error %s'$% (name,ret))
326
327 def freeSeqg(self,name):
328 """ Releases a sequence and releases therby the memory allocated by the sequence.
329
330 ** Implementation of '‘AlpSeqgFree'" from the DLL.
331
332 Raises
333 e
334 Exception:
335 - If '‘"AlpSeqgFree’’ returns an error.
336 o
337
338 ret = dmd dll.AlpSeqgFree(self.DevID,self.seq ids[name])
339 if ret != 0:
340 raise Exception('Releasing sequence %s failed. Error %s' $(str(name), ALP ERR[ret]))
341 else:
342 del self.seq_ids[name]
343 print ('Released sequence %s :) '$name)
344 self.last_added_seq = None
345
346 def inquireSeq(self,name, conv=True) :
347 "rrmoAllows to inquire a sequence and returns a dict with the most important properties.
348
349 ** Implementation of parts of ' ‘AlpSegInquire’’ from the DLL.
350
351 By default, the values are returned a converted form.
352 If '‘converted'' 1is False, the values will be returned as they come
353 from the DMD, i.e. as ctypes.c int.

Page 5 of 11

File - C:\Users\victo\PycharmProjects\LAPD lab\communication.py

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389

390
391
392
393

394
395
396
397

398
399
400
401

402
403
404
405

406
407
408
409

410
411
412
413

414
415
416
417

propts : *dict*
Dictionary containing the properties. Keys are (as string):
-''Seq Bitplanes'':
Bit depth of the pictures in the sequence. Should be 1.
-''Seq Bitnum'"®
The bit depth for displaying (could reduce bitdepth for showing).
Should also be 1.
-''Seq Bin Mode' "
If bitplanes or bitnum = 1 (binary mode), it is possible
to use a mode without dark phase. Shows, whether this
mode 1is active.
-''Seq Picnum'"®
Number of pictures in the sequence.
-''Seq Pic Time' ' :
Time beween start of two consecutive pictures (in micro s).
The illumination time might be smaller but is chosen so that
it is maximal.
-''Seq Illum Time'"
Time, one picture is displayed on the DMD. Is <= '‘Seq Pic Time'' - 44 microseconds.
If the DMD is in ° \ALP_BIN_UNINTERRUPTED‘ ‘ mode, it will be set to
0 and ignored.
-''Seq Min Illuminate Time'':
Minimal possible value for '‘Seq Illuminate Time''. (in mirco s)
-''Seq Data Format'"®
Data format of the sequence
-''Seq ON Time'"
Total active projection time.
-''Seq OFF Time''
Total inactive projection time.
mrrmnm
ditcsqg = {} ### To be read in blocks of 4 lines, init, query, test if conv, convert
ditcsq['Seq Bitplanes']=ctypes.c_int()
ret = dmd dll.AlpSeqInquire(self.DevID,self.seq ids[name],ALP BITPLANES, ctypes.byref(ditcsql[’

Seq_Bitplanes']))

if conv:
ditcsq['Seq Bitplanes'] = ditcsq['Seq Bitplanes'].value
ditcsqg['Seq Bitnum']=ctypes.c_int()
ret += dmd_dll.AlpSegInquire (self.DevID,self.seq_ids[name],ALP_BITNUM, ctypes.byref(ditcsq['Seq Bitnum']

if conv:
ditcsq['Seq Bitnum']=ditcsq['Seq Bitnum'].value
ditcsq['Seq Bin Mode']=ctypes.c_int ()
ret += dmd dll.AlpSeqInquire(self.DevID,self.seq ids[name],ALP_BIN MODE, ctypes.byref(ditcsql[’

Seq_Bin Mode']))

if conv:
ditcsq['Seq Bin Mode'] = ALP_INQ ARGS[ditcsqg['Seq Bin Mode'].value]
ditcsq['Seq Picnum']=ctypes.c_int()
ret += dmd_dll.AlpSegInquire(self.DevID,self.seq_ids[name],ALP_PICNUM, ctypes.byref(ditcsq['Seq Picnum']

if conv:
ditcsq['Seq Picnum']=ditcsq['Seq Picnum'].value
ditcsq['Seq Pic Time']=ctypes.c_int ()
ret += dmd dll.AlpSeqgInquire(self.DevID,self.seq ids[name],ALP_PICTURE TIME,ctypes.byref(ditcsql['

Seq_Pic Time']))

if conv:

ditcsqg['Seq Pic Time'] = str(ditcsq['Seq Pic Time'].value/1000.) + ' ms'
ditcsqg['Seq Illuminate Time']=ctypes.c_int()
ret += dmd dll.AlpSeqInquire(self.DevID,self.seq ids[name],ALP_ILLUMINATE TIME, ctypes.byref(ditcsql[’

Seq_Illuminate Time']))

if conv:

ditcsqg['Seq Illuminate Time'] = str(ditcsql'Seq Illuminate Time'].value/1000.) + ' ms'
ditcsq['Seq Min Illum Time']=ctypes.c_int()
ret += dmd dll.AlpSeqgInquire(self.DevID,self.seq ids[name],ALP_MIN ILLUMINATE TIME,ctypes.byref(ditcsqgl

'Seq Min Illum Time']))

if conv:

ditcsq['Seq Min Illum Time'] = str(ditcsq['Seq_Min_Illum;Time'].value/lOOO.) + ' ms'
ditcsq['Seq ON Time']=ctypes.c_int ()
ret += dmd_dll.AlpSeqgInquire(self.DevID,self.seq_ids[name],ALP_ON_TIME,ctypes.byref(ditcsql'Seq ON Time

Page 6 of 11

File - C:\Users\victo\PycharmProjects\LAPD lab\communication.py

417 1))

418 if conv:

419 ditcsqg['Seq ON Time'] = str(ditcsq['Seq ON Time'].value/1000.) + ' ms'

420 ditcsq['Seq OFF Time']=ctypes.c_int()

421 ret += dmd dll.AlpSegInquire(self.DevID,self.seq_ids[name],ALP_OFF TIME,ctypes.byref(ditcsql’
Seq OFF Time']))

422 if conv:

423 ditcsqg['Seq OFF Time'] = str(ditcsq['Seq OFF Time'].value/1000.) + ' ms'

424 ditcsq['Seq Data Format']=ctypes.c_int()

425 ret += dmd dll.AlpSeqgInquire(self.DevID,self.seq ids[name],ALP_DATA FORMAT,ctypes.byref(ditcsql[’
Seq Data_ Format']))

426 if conv:

427 ditcsq['Seq Data Format']=ALP_INQ ARGS[ditcsq['Seq Data Format'].valuel

428 if ret != 0O:

429 raise Exception('Error while inquirering sequence %s.'$%name)

430 return ditcsqg

431

432 def controlSeq(self,name,arg,num) :

433 "rm Allows to control properties of the sequence.

434

435 Parameters

436 e

437 name

438 Name the sequence was allocated with.

439 arg : *string*

440 Property to be changed. One of the following:

441 -*'ALP BIN MODE"®

442 Allows to control, wheter the sequence should be displayed

443 normally (0) or in uninterrupted mode (2106).

444 Can also pass ° \ALP_BIN_NORMAL “Coor ‘ALP_BIN_UNINTERRUPTED‘)

445 as string.

446 **Requires a following call of ''DMD.timingSeqg () ' to become active

447 -''ALP DATA FORMAT®

448 Allows to change the data format. See ALP-Documentation for further details.

449 - "ALP FIRSTFRAME "

450 Allows to restrict the pictures to be shown.

451 Selects the first picture of the sequence to be shown.

452 - "ALP LASTFRAME "

453 Allows to restrict the pictures to be shown.

454 Selects the last picture of the sequence to be shown.

455 -'‘ALP SEQ REPEAT®

456 Sets how often the sequence should be shown when DMD.startProj (seqg) 1is called.

457 Default is 1.

458 num : *int#*

459 A parameter to specify the changement.

460 o

461 if isinstance (num, str):

462 c_num = ALP_CONTRL_ARGS [num]

463 else:

464 c_num = ctypes.c_int (num)

465 ret = dmd_dll.AlpSeqgControl (self.DevID,self.seq_ids[name],ALP_CONTRL_ARGS[arg],c_num)

466 if ret != 0O:

467 raise Exception('Changing argument %s of sequence %s failed. Error %s' % (ALP_CONTRL ARGS[arg],name,
ALP_ERR[ret]))

468

469 def putSeq(self,name,data_array):

470 """ Passes a numpy array of length 1 = (pic num*display height*display width/8) to the DMD

471

472 **Implementation of ' ‘AlpSeqPut’' from the DLL.

473 See ALP documentation for further details.

474 e

475 print ("Uploading images to the DMD...")

476 #array pointer = data array.ctypes.data as (POINTER (c_ubyte))

477 array pointer = data array.ctypes.data as(POINTER(c_ char))

478 #array pointer = data array.ctypes.data #creates the pointer, a np routine

479 ret = dmd dll.AlpSeqPut(self.DevID,self.seq ids[name],ALP_DEFAULT,ALP DEFAULT,array pointer)

480 if ret != 0:

481 raise Exception('Putting pictures into sequence failed. Error %s' $ALP_ERR[ret])

482 else:

483 print ('loaded data for sequence %s on dmd :) '%name)

484

Page 7 of 11

File - C:\Users\victo\PycharmProjects\LAPD lab\communication.py

485

486 def timingSeg(self,name,illuminate_time=None) :

487 "rmoAllows to set the picture time.

488

489 **Implementation of parts of ' ‘AlpSeqTiming' ' from the DLL.

490 Picture time should be in microseconds. Maximum is 10s.

491 The picture time is the time between the start of two consecutive pictures.

492 Can optionally also change the illumination time for °'ALP BIN NORMAL'' mode.

493 The Illumination time is the time, the picture is actually viewed.

494

495 Parameters

496 0 e

497 pic time : *int*

498 The time between the start of two consecutive pictures.

499 If None, it will be set to the smallest possible time compatible with

500 illumination time. If both are None, it will be set to

501 1/30 second.

502 illuminate time : *int*

503 The time a picture will be illuminated. If None, it will be the

504 maximal possible time; approxemately pic time - 44 miroseconds.

505 o

506 pic_time = illuminate_ time+45

507 if not illuminate time:

508 illuminate time = 0

509 if not pic time:

510 pic _time = 0

511 print("illu time: ", illuminate time)

512 print ("pic time: ", pic time)

513 ret = dmd dll.AlpSeqTiming(self.DevID,self.seq ids[name],ctypes.c long(int(illuminate time)),ctypes.
c_long(int(pic_time)),ALP DEFAULT,ALP DEFAULT,ALP DEFAULT)

514 if ret != 0O:

515 raise Exception('Changing time failed. Error %s' SALP ERR[ret])

516

517 def controlProj(self,cont type, cont value):

518 "mrmoAllows to control the project.

519

520 **Implementation of " ‘AlpProjControl’’ from the DLL.

521

522 The control parameters can also be passed as integers, accoding to the documentation.

523

524 Parameters

525 e

526 cont type : *str*

527 One can change the following properties

528 - "ALP PROJ MODE" "’

529 Changes the projection mode. Possible cont value are:

530 - ''ALP MASTER'' : The pictures are refreshed by the DMD accoding to the settings by DMD.
timingSeq.

531 - "CALP SLAVE'' : The transition of a picture follows an external trigger.

532 - "ALP PROJ INVERSION':

533 Inverts the image pixels. Possible cont value are

534 - ' "ALP DEFAULT*

535 - ' 'NOT ALP DEFAULT "

536 - ALP PROJ UPSIDE DOWN':

537 Flipps the image. Possible cont value are

538 - 'ALP DEFAULT "

539 - ' 'NOT ALP DEFAULT"

540 mn

541 if isinstance(cont_type,str):

542 c_cont_type = ALP_CONTRL_ARGS[cont_ type]

543 else:

544 c_cont_type = ctypes.c_int (cont_type)

545 if isinstance(cont_value,str):

546 c_cont _value = ALP CONTRL ARGS[cont value]

547 else:

548 c_cont _value = ctypes.c_int(cont value)

549 ret = dmd dll.AlpProjControl(self.DevID,c_cont type,c_cont value)

550 if ret != 0:

551 raise Exception('Changing properties of Project failed. Error %s' $ALP_ERR[ret])

552 else:

553 print ("Successfully change the ", cont type, "to", cont value)

Page 8 of 11

File - C:\Users\victo\PycharmProjects\LAPD lab\communication.py

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620

621
622
623

def

def

def

def

def

startProj (self, seq_name=None) :
""" Starts projecting the sequence ' ‘seq name’’

**Implementation of " ‘AlpProjStart’" from the DLL.

If no argument is passed, the last added seq will be played.
mrirnm
if not seqg name:
seq name = self.last added seq
ret = dmd dll.AlpProjStart(self.DevID,self.seq ids[seq name])
if ret != O:
raise Exception('Playing sequnce %s failed. Error %s.' % (seq_name,ALP_ERR[ret]))
else:
print ('playing sequence %s :) '$seq name)

startContProj (self, seq name=None) :
" Starts continuously playing the sequence ' ‘seq name’ .

If None is given, starts the last inquired sequence.
**Implementation of " ‘AlpProjStart’’ from the DLL.
mrrn
if not seq name:
seq name = self.last added seq
ret = dmd dll.AlpProjStartCont(self.DevID,self.seq ids[seq name])

if ret != 0O:

raise Exception('Playing continuously sequnce %s failed. Error %s.' % (seq_name,ALP ERR[ret]))
else:

print ('playing continuously sequence %s :) '$seq name)

waitProj (self):
"""Pauses the script until the acutally plaing sequence has finished. """
ret = dmd dll.AlpProjWait (self.DevID)
if ret != 0O:
raise Exception('Waiting for sequnce failed. Error %s.' S$ALP_ERR[ret])

haltProj (self):
" Stops the sequence currently running on the DMD.

In fact it finishes the actually playing sequence and stops then.
See semester thesis of Matthias Mueller-Schrader for details.
mrrmr
ret = dmd dll.AlpProjHalt (self.DevID)
if ret:
raise Exception('Halting project failed. Error %s .' $%ALP_ERR[ret])

inquireProj (self, conv=True) :
""" Returns some information about the project on the DMD.

** Implementation of ' ‘"AlpProjInquire’’ from the DLL.

By default, the arguments are passed in a converted way. Set conv=False to
get them as c int.

Returns
tmp : *dict*
Dictionary containing the properties. Keys are:

‘*ALP_PROJ MODE""
The projection mode (master or slave).
‘*ALP PROJ STATE "'
The actual state of the projection (active or idle).
i
tmp = {}
tmp['ALP PROJ MODE'] = ctypes.c_int()
ret = dmd_dll.AlpProjInquire(self.DevID,ALP_CONTRL_ARGS['ALP PROJ MODE'],ctypes.byref (tmp['ALP PROJ MODE

if ret:
raise Exception('Inquireing project failed. Error %s.' %ALP ERR[ret])
tmp['ALP _PROJ STATE'] = ctypes.c_int()

Page 9 of 11

File - C:\Users\victo\PycharmProjects\LAPD lab\communication.py

624 ret = dmd dll.AlpProjInquire(self.DevID,ctypes.c_int (2400),ctypes.byref (tmp['ALP PROJ STATE']))
625 if ret:

626 raise Exception('Inquireing project failed. Error %s.' 3%ALP_ERR[ret])
627 if conv:

628 for key in tmp.keys():

629 tmp[key] = ALP_INQ ARGS[tmp[key].value] ### Convert to right format.
630 return tmp

631

632

633 def compilePicturev2(self, img):

634 print ("Compiling images...")

635 if isinstance(img, np.ndarray) and img.ndim ==

636 img = [img]

637 tArray = np.zeros (0, dtype='B")

638 image nbr = 1

639 for arr in img:

640 arr.resize (1, (1024 * 768)

641 tArray = np.append(tArray, arr)

642 if image nbr % 500 == O0:

643 print ("Progress", int (100 * image nbr / len(img)), "S%")

644 image_nbr = image_nbr + 1

645 print (int(len(tArray)/786432), "images compiled in this package")

646 return tArray

647

648 def compilePicturev3(self, img):

649 print ("Compiling images...")

650 img.resize (1, (1024 * 768)

651 #img = np.unpackbits (img)

652 image print = np.packbits (img)

653 image print.resize(768, 1024)

654 imgagee = Image.fromarray(image print)

655 imgagee.save ('table.png')

656 return img

657

658 def loadArrToDMD (self,name,img,timing = None,unint=True) :

659 " Takes an (collection of) arrays, converts it into the right format
660 and transforms it to the DMD.

661

662 Parameters

663 0 co e

664 name : *int,str... must be hashable*

665 The name for the sequence. Is needed to be able to control the sequence later
666 and to start it.

667 img : *2dim numpy array or collections of it*

668 The image (s). Each image should be a 2dim boolean numpy array with shapes
669 (disp height,disp width). Several images can be handeld as list or tuple
670 of arrays or a 3-dim array with the pictures aligned along the axis 0.
671 timing : *opt, float*

672 The time each picture shuold be shown [microsecond].

673 unint : *opt, bool*

674 Whether the uninterrupted mode should be implemented or not.

675 (See also documentation of API)

676 o

677 pckd = self.compilePicture (img)

678 picnum = len(pckd) * 8 /(self.disp height*self.disp width)

679 self.allocSeq(name, picnum)

680 if unint and not timing:

681 timing = self.inquireSeq(name) ['Seq Pic Time']

682 if unint:

683 self.controlSeq(name, 'ALP BIN MODE',2106)

684 if timing or unint:

685 self.timingSeq(name, timing)

686 self.putSeq(name, pckd)

687

688 def inspect(self,conv=True):

689 "mrm o Inspects the DMD and returns a dict with the most important values.
690

691 Combines DMD.ingquireDev (), DMD.inquireSeq(lastSeq), DMD.inquireProj () and
692 returns a dictionarry containing all the keys from the methods.

693 If the last allocated sequence was removed or no sequence was allocated,
694 this information will not be added to the dict.

Page 10 of 11

File - C:\Users\victo\PycharmProjects\LAPD lab\communication.py

695 o

696 tmp = self.inquireDev(conv) ### Infos from the device.

697 if self.last added seq: ### Infos from the last seq (if existing).
698 tmp.update (self.inquireSeq(self.last added seq,conv))

699 tmp['Name of last alloc Seq'] = self.last added seq

700 tmp.update (self.inquireProj (conv)) ### Infos from the proj.

701 return tmp

702

Page 11 of 11

	Introduction
	Optical setup
	Devices
	Stimulus Generator
	Programming

	Electrodes amplifier
	Programming

	Digital Micromirror Device
	Programming

	Montage

	Overall script
	Images preparation
	Images projection & data acquisition
	Data processing
	Data visualisation

	Tests & results
	Conclusion
	Appendices

