

Welcome Master students!

Prof. Christophe Moser Section director

program director

Isabelle Schafer Administration

General info:

https://www.epfl.ch/education/ http://smt.epfl.ch/

15h00 - 15h30 : General info for new students

15h30 – 15h40 : Microengineering Master

15h40 - 15h50 : Robotics Master

15h50 - 16h00 : Q&A

16h00 – 17h00 : **Refreshments** (together with 1st year students) Outside in front of BM Building

Microengineering/Robotics Passerelle program

validé par la vice-présidence pour les affaires académiques le 25 mai 2022

Code	Matières	Enseignants Sections				Sen	iestre	S		Crédits	Période	Туре
		sous réserve		İ	AU	I		PR	I		des	exam.
		de modification		c	e	P	c	e	P		épreuves	
	Bloc 1 "Branches de base"						-			30		
MATH-203(a)	Analyse III	Michelat	MA	2	2					4	H	écrit
MATH-207(a)	Analysis IV (for SV, MT)	Licht	MA				2	2		4	E	écrit
ME-326	Automatique et commande numérique	Karimi + Salzmann	GM	4	1	1				6	н	écrit
MICRO-321	Ingénierie optique	Achouri K./Martin O.	MT	2	1	3				6	н	écrit
PHYS-201(c)	Physique générale : électromagnétisme	Boero	MT	4	2					6	H	écrit
MICRO-310(a)	Signaux et systèmes I (pour MT)	Unser	MT	2	2					4	Н	écrit
	Bloc 2 "Branches d'approfondissement"									27		
MICRO-313/314	Actionneurs et systèmes électromagnétiques I, II	Köchli/Perriard + Hodder/Köchli/Perriard	MT	2			2	1	2	7	E	écrit
MICRO-330	Capteurs	Boero/Shea	MT				5			5	E	écrit
MICRO-312	Physique des composants semiconducteurs	Besse	MT	4						4	H	écrit
MICRO-311(a)	Signaux et systèmes II (pour MT)	Unser	EL				2	2		4	E	écrit
MICRO-315	Systèmes embarqués et robotique + travail supplémentaire de 1 crédit	Mondada	MT				2		4	7	sem P	sans retrait
									_			
	Totaux :			20	8	4	13	5	6			
	Totaux par semaine :				32			24		57		

Pour réussir la passerelle HES, un étudiant doit :

- avoir acquis au moins 30 crédits à la fin du deuxième semestre de la passerelle HES et
- avoir acquis tous les crédits requis à la fin du quatrième semestre de la passerelle HES.

https://www.epfl.ch/education/studies/reglement-et-procedure/conditions_reussite/reussite-passerelle/

Microengineering/Robotics Passerelle program

Puis-je commencer le cycle Master sans avoir terminé la passerelle HES ?

Oui, mais seulement si :

- vous avez obtenu au moins 30 crédits ECTS de passerelle HES et
- vous n'êtes pas en échec définitif à la passerelle HES.

La période durant laquelle vous avez commencé votre cycle Master mais pas encore terminé la passerelle HES compte à la fois dans la durée maximale de la passerelle HES et dans celle du cycle Master.

Master program structure

https://www.epfl.ch/education/master/study-programs-structure/

Reading a study plan

2022-2023 MICROTECHNIQUE

Cycle Master

validé par la vice-présidence pour les affaires académiques le 25 mai 2022

Code	Matières	Enseignants	Sections			Sem	estres			Crédits	Nbre	Période	Туре
		sous réserve		М	[A1 /]	MA3		MA			places	des	examen *
		de modification		c	e	p	С	e	р			épreuves *	
	Place 1									26			
10000 406	Dioc I	D-lll/Chh	NOT			-				10		4	
MICRO-400	Products design & systems engineering	Discon angelerante	Dimm	2			10			10		sem A	sans retrait
MICKO-498	Projet microtechnique I	Divers enseignants	Divers	<	1		10	1	>	10		sem A ou P	sans retrait
HUM-nnn	SHS : introduction au projet	Divers enseignants	CDH	2		1				3		sem A	
HUM-nnn	SHS : projet	Divers enseignants	CDH					1	2	3		sem P	sans retrait
	Bloc 2									15			
MICRO-534	Advanced MEMS & microsystems	Briand	MT				3			3		Е	oral
MICRO-451	Applied and industrial robotics	Bouri	MT				2			2		Е	écrit
MICRO-455	Applied machine learning	Billard	MT	4						4		Н	écrit
EE-311	Apprentissage et intelligence artificielle	Liebling	EL				2		2	4		Е	écrit
MICRO-421	Imaging optics	Psaltis	MT	2	1					3		sem A	sans retrait
ME-413	Introduction to additive manufacturing	Boillat + Boillat/Brugger/Moser	GM/MT	2		1				3		H	écrit
MICRO-426	Laser fundamentals and applications for engineers	Moser	MT				2	1		3		E	oral
MICRO-448	Manufacturing systems and supply chain dynamics	Filliger/Gallay	MT				2	1		3		E	oral
MICRO-431	Materials and technology of microfabrication	Gijs/Lehnert	MT	2	1					3		H	oral
MICRO-457	Materials processing with intelligent systems	Hoffmann/Wasmer	MT	2	1					3		H	oral
MICRO-428	Metrology	Bruschini/Charbon/Fantner	MT/SV				3			3		E	oral
MICRO-530	Nanotechnology	Boero/Brugger	MT				3			3		E	oral
MICRO-523	Optical detectors	Besse	MT	3						3		H	oral
MICRO-470	Scaling laws & simulations in micro & nanosystems	Renaud/Shea	MT	3	1					4		H	oral
MICRO-420	Selected topics in advanced optics	Martin O.	MT	3						3		Н	oral
EE-594	Smart sensors for IoT	Enz/Ionescu	MT/EL	2	1					3		Н	écrit
	Groupe 3 "Options"				-					49			
	Voir liste d'options ci-après												
	Total des crédits du cycle master									90			

https://www.epfl.ch/education/studies/en/rules-and-procedures/pass-conditions/requirements-passing-master-degree/

Requirements for obtaining the master's degree

Block

A **block is passed** (and thus all the credits associated with the block are acquired) when all the subjects it contains have been examined at least once and the **weighted average of the block is 4,00 or above**.

Group

A group is passed when enough subjects in the group are passed (final grade 4,00 or above) to reach the number of credits associated with the group. Although an average is calculated, it has no bearing on the passing of the group.

Master Program structure

Microenginering Robotics Master thesis Master thesis (30 ECTS) (30 ECTS) Industry internship Industry internship **Optional Group** (extended by **Optional Group** (extended by (extended by autorisation) Project II (10 ECTS) (30 ECTS) (39 ECTS) MAKE Proi. (10 ECTS) Project II Project II Project II Project II Project II (10 ECTS) (10 ECTS) (10 ECTS) (10 ECTS) (10 ECTS) **Optional Group by orientation** (17 ECTS) (17 courses, 46 ECTS possible, 3 orientations) SHS Project (6 ECTS) SHS project (6 ECTS) Semester Project I (10 ECTS) Robotics project I (10 ECTS) Product design and system engineering (10 ECTS) Basic compulsory courses (15 ECTS)

2 Semester projects

Microenginering Project II (10 ECTS) Project II Project II (10 ECTS) (10 ECTS)

> Bloc 2 (15 ECTS) Restricted course choice (17 courses, 46 ECTS possible, 3 orientations

> > SHS Project (6 ECTS

Semester Project I (10 ECTS)

Product design and system engineering (10 ECTS

Finding a project

Lab websites with semester and master projects proposals &

LABORATOIRE	S		RESPONSABLES		
Institut	LAB	Laboratoire	Prénom	Nom	Concerné(s)
ENAC-IIE	DISAL	Distributed Intelligent Systems and Algorithms Laboratory	Alcherio	Martinoli	MT&RO
STI-IBI	Biorob	Biorobotics Laboratory	Auke	ljspeert	MT&RO
STI-IBI	LBEN	Laboratory of Nanoscale Biology	Aleksandra	Radenovic	MT
STI-IBI	LMAM	Laboratory of Movement Analyssis and Measurement	Kamiar	Aminian	MT&RO
STI-IBI	LNE	Medtronic Chair in Neuroengineering	Diego	Ghezzi	MT&RO
STI-IBI	MIPLAB	Medical Image Processing Laboratory	Dimitri	Van De Ville	MT&RO
STI-IBI	TNE	Translational neuroengineering lab	Silvestro	Micera	MT&RO
STI-IBI/IMT	LBNI	Laboratory for Bio- and Nano-instrumentation	Georg	Fantner	MT&RO
STI-IEL	EMC	Electromagnetic Compatibility	Farhad	Rachidi	MT&RO
STI-IEL	INL	Integrated Neurotechnologies Laboratory	Mahsa	Shoaran	MT&RO
STI-IEL	LIONS	Laboratory for Information and Inference Systems	Volkan	Cevher	MT&RO
STI-IEL	TCL	Telecommunications Circuits Laboratory	Andreas	Burg	MT
STI-IEM	ICLAB	Bio/CMOS Interfaces group	Sandro	Carrara	MT&RO

IMPORTANT : If the Professor proposing the project is not affiliated with Microengineering section, the project has to submitted for validation to <u>sebastian.gautsch@epfl.ch</u>

https://sti.epfl.ch/research/institutes/iem/project-proposals-eng/

Project registration

Register on IS-A as soon as the portal is opened by the Academic Service.

• This registration is official and mandatory, please respect the deadline: **2 weeks after semester start**

Important dates

Project starting date:

• Beginning of the semester

Report hand in

- Spring semester : at the latest on Friday of the first week after the end of the semester
- Fall semester : at the latest on Friday of the second week after the end of the semester

Your mark will be transferred to SAC 15 days after the report has been handed in.

IMPORTANT: The supervising Professor should confirm the exact dates to hand in the report and the oral presentation at the beginning of the project.

Project evaluation

An oral presentations of the work progress at mid-semester is **strongly recommended**. A final presentation at the end of the project **is mandatory**. The dates have to be defined with the Professor

- <u>Recommandations for intermediate and final presentations</u>
- <u>Template for intermediate presentation</u>
- <u>Template for final presentation</u>

A written report is mandatory at the end of the project

Example of a typical semester project report

The written report will be followed by an oral defense, organized by the Professor. The section also recommends to complete the following form (which is a supplement to the evaluation) and to send the PDF to the Section for the student's file.

• Project evaluation sheet (template)

MAKE projects

A dedicated procedure for MAKE projects as semester projects is being discussed. For now, please follow the same instructions as for regular semesters.

IMPORTANT : If the Professor proposing the project is not affiliated with Microengineering section, the project has to submitted for validation to <u>sebastian.gautsch@epfl.ch</u>

Microenginering

Robotics

Minors

A minor is a group of compulsory and optional courses from one or more Master's programs.

EPFL offers a wide choice of **disciplinary** and **interdisciplinary** minors.

Interdisciplinary minors

Interdisciplinary minors often group together courses from several Master's programs. Some consist of a multidisciplinary topic (I.E. photonics minor), others offer complementary education to the classical engineering curriculum (Management, Technology and Entrepreneurship)

Rules and procedures:

https://www.epfl.ch/education/studies/en/rules-and-procedures/minors/

Recommended and possible Minors

					IVI I	IVI I -RO
		Master E	CTS (PdM	inclus/Master project included)	120	120
N	lineurs / Minors	Туре	Sectior	Contact		
В	iocomputing	Interdiscip	DIN	Salathé M.	С	С
В	iotechnology	Interdiscip	ODCGC	Pick H.	С	С
D	ata and internet of things	Interdiscip	IEL	Atienza D.	r	С
E	inergy	Interdiscip	ol GM	Maréchal F.	r	r
S	ystems Engineering	Interdiscip	MTE	Weber Th.	С	С
E	ingineering for sustainability	Interdiscip	SIE	Gilliéron P.Y., Leterrier	r	r
Т	echnology management and entrepreneurship	Interdiscip	MTE	de Rassenfosse G.	r	С
P	hotonics	Interdiscip	MT	Martin O.	r	r
N! P	hysics of living systems	Interdiscip	olsv	Persat A.	r	r
N! C	luantum science and engineering	Discipl.	SIQ	Macris N. et Klinke H.	r	r
B	iomedical technologies	Interdiscip	MT	Renaud Ph.	r	r
S	pace technologies	Interdiscip	ol EL	Kneib JP.	r	r
D	lata science	Discipl.	SC	Hazboun E.	С	С
С	computer science	Discipl.	IN	Hazboun E.	С	С
F	inancial engineering	Discipl.	IF	Fahlenbrach R.	С	С
N! N	leuro-X	Discipl.	NX	Hummel F, Micera S.	r	r
N	1aterials science and engineering	Discipl.	MX	Marselli B.	С	С
С	computational science and engineering	Discipl.	MA	Pouchon O.	r	С
				F		

r recommanded in the study plans

c choice of the courses with the advice of the initiating section and the person in charge of the minor

MT

NAT.

Registering a Minor

The student **informs the section of his choice of minor** and **selects it in the courseregistration screen on IS-Academia**, **no later than the end of the first semester** of his Master's studies.

The selection of courses making up a minor is done with the approval of the student's program and the person in charge of the minor. The student registers for these courses on IS-Academia, following the normal procedure.

A minor is successfully completed when **30 credits at minimum have been gained** among the approved subjects. Each subject must be successfully completed on it own merits: there is no possible compensation between the subjects. These 30 credits **add to the total for a 90-credit Master's program.**

Microenginering

Master thesis

(30 ECTS)

Bloc 2 (15 ECTS) Restricted course choice (17 courses, 46 ECTS possible, 3 orientations

SHS Project (6 ECTS

Semester Project I (10 ECTS

Product design and system engineering (10 ECTS

Mandatory Industry immersion: 2 options

Internship

- Minimum duration of 2 month, up to 6 months
- Immersion into industry
- Familiarize with company processes
- Aquire specific competences
- Apply transversal skills
- Evaluation report by student and industry supervisor

Master project in industry

- A research project in the company
- Student applies the competences aquired during his master
- Supervised by a Professor from his section
- Written report and oral defense
- Monthly feedback to Professor
- 25 week duration (+1 week vacation)

When to place your internship

Master thesis (PDM) in academia in foreign Universities: 25 weeks

Master thesis

Microenginering Master thesis (30 ECTS)

Bloc 2 (15 ECTS) Restricted course choice (17 courses, 46 ECTS possible, 3 orientations

SHS Project (6 ECTS

Semester Project I (10 ECTS

Product design and system engineering (10 ECTS

Master thesis location

Students have different option to complete the Master thesis:

- In a lab @ EPFL
- In a foreign University, co-supervised by a Prof from EPFL
- In Industry, co-supervised by a Prof from EPFL

Master projects 2021-2022

Academic outreach

Brigham and Women's Hospital (BWH), Harvard Medical School Brigham and Women's Hospital, Harvard Medical School California Institute of Technology Caltech - California Institute of Technology ETH (Robotics and Perception Group, with Prof. Scaramuzza) jointly wi ETH Zürich ETHZ Georgia Institute of Technology Harvard Harvard John A. Paulson School of Engineering and Applied Sciences Harvard SEAS - Biodesign lab Harvard University - School of Engineering and Applied Sciences Imperial College Imperial College London Korea Advanced Institute of Sciences and Technology Max Planck Institute fur Informatik National University Singapore Polytechnique Montreal Stanford Stanford University Technical University of Denmark Technical University of Denmark (DTU) UC Berkeley Université de Genève Universiteit van Amsterdam University of Basel University of British Columbia University of California, San Diego University of Geneva University of Illinois at Urbana-Champaign University of Oregon-Knight Campus

Industry outreach

Alpine Intuition Sarl Alpia SA Logitech Europe SA Artiria Medical SA Astek London Centre for Nanotechnology autonomyo Magma Learning Baracoda Mantis Technologies GmbH Bionomous Sàrl Manufacture des Montres Rolex SA Bulgari Horlogerie Medtronic Europe Sarl Carevature Medical Melexis Technologies SA Carl Zeiss AG Cartier Opérations - Branch of Richemont Internationa Merck Serono SA Metvos CleanGreens Solution SA CSEM - Centre suisse d'électronique et de microtech MotionTech CSEM - Centre suisse d'électronique et de microtechNeurorestore CSEM S.A Neurorestore (CHUV) Cyberbotics Ltd. Observatoire de Genève Demaurex SA Omnisens SA ecoRobotix Onward Medical SA Empa opticode.ch European Southern Observatory Philips High Tech Campus Eindhoven Expedia Lodging Partner Services Readily3D SA EyeOn Switzerland Rigi Technologies Fusion Lab Technologies SARL Rigitech GSK Hublot S A Rolex Hvdromea Schindler Aufzüge AG IBM Research GmbH Sensirion AG ID Quantique SA Technis SA IEP Innovation Park Foundation Tecma Industrias Illuin Technology TWICE SA Innovation Park Foundation (EIP) VLC Photonics Isochronic AG Volocopter Gmbh KEP Innovation Center

Master projects guidelines

SCHOOL OF ENGINEERING > ELECTRICAL AND MICRO ENGINEERING

RING

THE INSTITUTE EDUCATION EL

EDUCATION MT

Master projects guidelines

• Calendar

EPFL

- Choosing a master project in a laboratory
- Master project in another university
- Project's objectives
- Master projects in Industry (PDMe)
- Registration
- Hand-in procedure
- Evaluation method
- Student prizes

https://sti.epfl.ch/research/institutes/iem/master-project-guidelines/

Our Master Programs

MASTER MICROENGINEERING Micro & nanosystems Optics and Photonics Advanced manufacturing EP 2

Microengineering Master

 Faculté des Sciences et Techniques de l'Ingénieur (STI)

Microengineering Master

Official study plan 2022 - 2023 Rulebook (in French)

Code	Matières	Enseignants	Sections	1		Ser	nestr	es		Crédits	Nbre	Période	Туре
		sous réserve		M	[A1 /	MA3	3	MA	2		places	des	examen *
		de modification		c	e	p	C	e	р			épreuves *	
	Rioc 1			_						26			
MICRO-406	Products design & systems engineering	Bellouard/Charbon	MT	5		5				10		sem A	sans retrait
MICRO-498	Projet microtechnique I	Divers enseignants	Divers				- 10			10		sem A ou P	sans retrait
HUM-nnn	SHS : introduction au projet	Divers enseignants	CDH	2		1	1		1	3		sem A	
HUM-nnn	SHS : projet	Divers enseignants	CDH					1	2	3		sem P	sans retrait
	Bloc 2									15			
MICRO-534	Advanced MEMS & microsystems	Briand	MT				3			3		E	oral
MICRO-451	Applied and industrial robotics	Bouri	MT				2	2		2		E	écrit
MICRO-455	Applied machine learning	Billard	MT	4						4		Н	écrit
EE-311	Apprentissage et intelligence artificielle	Liebling	EL				2		2	4		E	écrit
MICRO-421	Imaging optics	Psaltis	MT	2	1					3		sem A	sans retrait
ME-413	Introduction to additive manufacturing	Boillat + Boillat/Brugger/Moser	GM/MT	2		1				3		Н	écrit
MICRO-426	Laser fundamentals and applications for engineers	Moser	MT				2	1		3		E	oral
MICRO-448	Manufacturing systems and supply chain dynamics	Filliger/Gallay	MT				2	1		3		E	oral
MICRO-431	Materials and technology of microfabrication	Gijs/Lehnert	MT	2	1					3		Н	oral
MICRO-457	Materials processing with intelligent systems	Hoffmann/Wasmer	MT	2	1					3		H	oral
MICRO-428	Metrology	Bruschini/Charbon/Fantner	MT/SV				3			3		Е	oral
MICRO-530	Nanotechnology	Boero/Brugger	MT				3			3		E	oral
MICRO-523	Optical detectors	Besse	MT	3						3		Н	oral
MICRO-470	Scaling laws & simulations in micro & nanosystems	Renaud/Shea	MT	3	1					4		Н	oral
MICRO-420	Selected topics in advanced optics	Martin O.	MT	3						3		Н	oral
EE-594	Smart sensors for IoT	Enz/Ionescu	MT/EL	2	1					3		H	écrit
										40			
	Groupe 5 "Options"					-			_	49			
	voir liste d'options ci-après												

Products Design and Systems Engineering

Foundational course in the first semester letting groups of students create their own product from concept tu prototype, including a first marketing plan.

With invited speakers from Academis and Industry.

Orientations – Microengineering Master

In Bloc 2 and Group 3, we propose 3 orientations to students. They are meant as **guidelines** to help students in their course choices.

Orientations - Master Microengineering

Orientations - Master Microengineering

<u>AI / ML</u> Avanced machine learning Machine learning programming: Distributed intelligent systems Model predictive control Advanced control systems Advanced satellite positioning System identification

:

more

And

Signals Image processing I Image processing II Bio-image informatics Audio Neural signal and signal processing Applied biomedical signal processing Systems Embedded systems Systems engineering Lab on app development for tablets and smartphones Management de projet et analyse du risque Space mission design and operations Translational neuroengineering

Robotics Basics of mobile robotics Legged robots Aerial robotics Evolutionary robotics

Advanced manufacturing

NESPRESSO

Supply chain

Example of Industry players Advanced Manufacturing & Production

PHILIP MORRIS INTERNATIONAL

Robotics Master

 Faculté des Sciences et Techniques de l'Ingénieur (STI)

Robotics master

Official study plan Rulebook (in French)

validé par la vice-présidence pour les affaires académiques le 25 mai 2022

Code	Matières	Enseignants	Sections	[Sem	estres			Crédits	ts Nbre places	Période	Туре
		sous réserve		M	A1/1	MA3		MA				des	examen *
		de modification		c	e	р	c	e	р			épreuves *	
	Bloc 1 "Basic compulsory courses"									15			
MICRO-455	Applied machine learning	Billard	MT	4						4		H	écrit
MICRO-452	Basics of mobile robotics	Mondada	MT	2	2					4		н	écrit
MICRO-450	Basics of robotics for manipulation	Bouri	MT	3						3		Н	écrit
ME-425	Model predictive control	Jones	GM	2	2					4		H	écrit
	Bloc 2 "Compulsory practice"									18			
MICRO-453	Robotics practicals	Divers enseignants	MT						2	2		sem P	sans retrait
MICRO-580	Robotics project I	Divers enseignants	Divers	<			0		>	10		sem A + P	sans retrait
HUM-nnn	SHS : introduction au projet	Divers enseignants	CDH	2		1				3		sem A	
HUM-nnn	SHS : projet	Divers enseignants	CDH					1	2	3		sem P	sans retrait
	Groupe 3 "Options"									57			
MICRO-581	Robotics project II	Divers enseignants	Divers	<>]	10		>	10		sem A + P	sans retrait
	see list	Divers enseignants	Divers					-		47			
	Total des crédits du cycle master									90			

Structure

PFL

microtechnique

SHS project (6 ECTS)

Robotics project I (10 ECTS)

Basic compulsory courses (15 ECTS)

Compulsory courses

Foundations :

- Basics of Mobile Robotics (4 ECTS; Mondada) fall
- Basics of robotics for manipulation (3 ECTS; Bouri) fall

Algorithms and Methods for Robotics :

- Applied machine learning (4 ECTS; Billard) fall
- Model Predictive Control (4 ECTS; Jones) fall

Practicals:

Robotics Practicals (2 ECTS; Mondada + all) - spring

Orientations

17 optional credits chosen among the optional courses of the chosen orientation, then free choice in robotics options.

Industrial Robotics

Medical Robotics

Mobile robotics

Orientations

Students must choose 17 ECTS of optional courses in one of these three orientations:

A Industrial roboticsB Medical roboticsC Mobile robotics

Optional courses and orientation	Α	В	С	59
Advanced control systems	A	В	С	3
Advanced machine learning	А	В	С	4
Advanced MEMS & microsystems			С	3
Advanced satellite positionning			С	4
Analyse de produits et systèmes	Α			2
Analysis and modeling of locomotion		В	С	4
Biomaterials		В		4
Commande embarquée de moteurs	А			2
Computational motor control		В	С	4
Computer vision	А	В	С	4
Conception mécanique intégrée	А			3
Continuous improvement of manufacturing systems	А			4
Controlling behavior in animal and robots		В	С	4
Deep learning	A	В	С	4
Distributed intelligent systems			С	5
Embedded systems	А	В	С	4
Evolutionary robotics			С	3
Flexible bioelectronics		В		4
Flying robots			С	4
Fundamentals of computer aided manufacturing	А			5
Fundamentals of neuroengineering			С	4
Haptic human robot interfaces	A			3
How technology shapes the workplace of the future	А	В	С	3
mage analysis and pattern recognition		В	С	4
mage processing I		В		3
mage processing II		В		3
industrial automation	А			3
industry dynamics, models & trends	А			4
intelligent agents	Α		С	6
Interdisciplinary project				10

Master thesis

Groupe à options Grand choix de cours (17 ECTS)

rioudedon management	A	_	_	1
Real-time embedded systems	А	в	С	
Robotique industrielle et appliquée	A			1
Sensorimotor neuroprosthetics		в		
Sensor orientation			С	
Sensors in medical instrumentation		В		
Signal processing for functional brain imaging		В		
System identification	А	В	С	
Systèmes mécatroniques	А	В	С	1

Orientation courses examples

2021-2022	ROBOTICS - Options		
Code	Matières	Enseignants	Crédits
MICRO-502	Aerial robotics	Floreano	3
MICRO-515	Evolutionary robotics	Floreano	3
MICRO-570	Advanced machine learning	Billard	4
EE-559	Deep learning	Fleuret	4
MICRO-514	Flexible bioelectronics	Lacour S.	4
EE-451	Image analysis and pattern recognition	Thiran JP.	4
MICRO-462	Learning and adaptative control for robots	Billard	4
MICRO-455	Applied machine learning	Billard	4
MICRO-553	Haptic human robot interfaces	Bouri	3
MICRO-401	Machine learning programming	Billard	2
BIOENG-404	Analysis and modelling of locomotion	Aminian/Ijspeert/Courtine	4
BIOENG-456	Controlling behavior in animals and robots	Ramdya	4
CIVIL-459	Deep learning for autonomous vehicles	Alexandre Alahi	6
ENG-466	Distributed intelligent systems	Martinoli	5
CS-487	Industrial automation	Tournier/Sommer	3
MICRO-507	Legged robots	ljspeert	3
ENV-548	Sensor orientation	Skaloud	4

Free options

EPFL **Remembering phases during COVID-19**

term."

microtechnique

https://www.iesalc.unesco.org/en/2022/05/18/report-reveals-the-state-of-higher-education-two-years-on-from-the-disruption-of-covid-19/

Unesco, May 2022

"The rapid return to in-person teaching and learning and the stabilization of enrolment patterns suggest that the changes will not lead to a fundamental transformation of higher education as a face-to-face experience. Higher Education Institutions around the world are likely to take forward at least some digitalized practices in the long

Course attendance and online offer

- Take profit as much as possible from presential courses and interact with teachers and assitants
- Follow live recordings only if you have major impediments
- Take profit of the School's infrastructure to be on campus
- Make use of archived recordings to revise, catch-up and strenghten your knowledge
- All teachers look forward to welocme xou in class in order to have the best dynamic and pedagogical teaching style possible

Indicative course evaluations

- Each semester, all courses given at EPFL are evaluated by registered students
- Your productive feedback is essential to help teachers of the section to adapt and improve in a continuouse way their lectures and teaching style.
- Only a high enough participation rate gives representative and useful information
- Your evaluations (and constructive recommendations) have a real impact on teaching

Let's set the example of a culture of respect

- Harassment, violence and discrimination are not tolerated here
- Provide and seek support
- Talk about it, bring up the problems

> go.epfl.ch/tsn (Trust and Support Network)

> Take the online training on Moodle: « Promoting Respect »

EPFL student services

The EPFL "Student Services" desk is the main contact point for all academic queries

For EPFL students or doctoral students, whether recently arrives or recently graduated, whether you have a doubt, a question or a problem. The "Student Services" Hotline is the focal point to process all your requests.

A question ?

Please contact the Student Services Hotline preferably in the following order:

- Look up our information pages on the website <u>EPFL studies</u>.
- Send an <u>e-mail</u>
- Go to the Student Services desk during office hours (see below)
- Call 021 693 43 45 (you will get voice mail outside office hours or if the office is busy)

Individual support

Social and psychotherapeutic consultations are available to students and doctoral students.

- Do you feel demotivated, isolated, depressed, anxious?
- Do you have problems related to your studies or finances or other kinds of personal problems?
- Are you in need of <u>accommodations for your</u> <u>studies</u>?
- Are you facing difficulties and need someone neutral to talk to?
- If you do not know which consultation to contact, do not hesitate to ask for an initial interview with the Social consultation or to refer to the <u>list of difficulties, advice and</u> <u>contacts</u>.

Get in touch with your study advisors

- Microengineering Master: <u>Sebastian Gautsch</u>
 - Advanced Manufacturing : Prof. Yves Bellouard
 - Biomedical Technologies : Prof. Philippe Renaud
 - Micro/nanosystems : <u>Prof. Herbert Shea</u>
 - Photonics : Prof. Olivier Martin
- Robotics master: <u>Prof. Francesco Mondada</u>
- Minor in Biomedical Technologies: <u>Prof. Philippe Renaud</u>
- Minor in Photonics: <u>Prof. Olivier Martin</u>
- Passerelle HES : <u>Sebastian Gautsch</u>
- Industry internships: <u>Hind Klinke</u>

EPFL mit microtechnique microtechnique

Before contacting the Section ...

SCIENCES ET TECHNIQUES DE L'INGÉNIEUR >

GÉNIE ÉLECTRIQUE

EPFL

ET MICROTE	CHNIQUE				
	INSTITUT	ÉDUCATION EL	EDUCATION MT	RECHERCHE	INNOVATION
Aperçu	Bach	elor	Master		Programme doctorale
Bienvenue du directeur de la section de	Accuei	il – Bachelor MT	Master en	Microtechnique	EDMI – Microsystèmes et microélectroniqu
microtechnique	Bachel	lor en Microtechnique	Master en	Robotique	EDPO – Photonique
La direction (SMT)	Critêre	es d'admission et candidat	ure Mineur en	technologies biomédie	cales EDRS – Robotique, Contrôle et Systèmes
Heures de bureau	Règles	s de prérequis – Bachelor	Mineur en	Photonique	intelligents
Journée d'accueil SMT	Micro	technique	Plan d'étuc	le – Cycle master mie:	EDAM – Manufacturing
Conseil consultatif	Règles	s de prérequis	Plan d'étu		
La section MT en chiffres	Cycle	Bachelor (MT)		1 -	
Plans et règles d'étude	Cycle	propédeutique (MT)	12	cn	
Témoignages			1001	.0.	
Canal Switchtube de la section		cn	1.00	OUTCAS	
Les prix en Microtechnique		5.	Critàras d'	admission at candidate	10
Associations d'étudiants			chieres de		ai e
Q&A des étudiants Covid-19					
Directives Covid-19 EPFL					
Stages d'ingénieur	Mobi	ilité horizontale			
A propos	A proj	pos			
Procédure pour les étudiants					
FAQ pour étudiants					
Documents					

Q EN / FR

search

Your EPFL e-mail !!!

1stname.lastname@epfl.ch

- Should now become your reference account
- Important info regarding your studies will be sent to this address

«Ignorantia juris non excusat»

 In case of doubt, please consult official regulations for your studies

MT Section office

The section office (BM1136) is open everyday for **administrative questions** from 8 AM to 2 PM

<u>Isabelle Schafer</u> (administrative assitant)

For detailed questions regarding **your curriculum or study plan**, please **request an appointement:**

- <u>Sebastian Gautsch</u> (section adunct)
- Prof. Christophe Moser (section director)

Memo sticker

Bienvenue !

Le présent document utilise la forme masculine, étant précisé cependant qu'il vise aussi bien les fen Nos **nouveaux étudiants Master** trouveront quelques compléments d'information en bas de pag

Bienvenue en Microtechnique

Vous avez, en toute objectivité, choisi la meilleure section !

Nous avons regroupé ici quelques éléments partagés par vos prédécesse

- Guide de préparation pour les nouveaux étudiants Bachelor
- Règlements et procédures : bien entendu, tous ces éléments sont à
- IS-Academia : l'outil de gestion de vos études à l'EPFL ! Notez qu'il cours, mais faites attention aux nombres de places disponibles : po
- Moodle : vous serez automatiquement inscrit à certains cours ! Pou moment venu.
- Courseware & SwitchTube
- BEAST: le point d'accès à toutes les ressources de la Bibliothèque (demandés par les enseignants, sans qu'il ne soit forcément nécessa
- Poséidon : le service de l'EPFL dédié au conseil d'achat et au suppo besoin d'être le plus performant du marché : la tâche la plus exigea
- Drive des Microtechniciens : vérifiez que vous êtes bien connecté à EPFL ». Les instructions sur l'utilisation du drive sont disponibles di
- Discord des Microtechniciens : pour communiquer et poser des que channel « Ressources » de ce serveur.
- A noter encore que les premières années ont un groupe Telegram (
- Et bien entendu, toujours à votre écoute pour vous soutenir et vou Johanne Pinel
- Pour terminer, nous vous rappelons qu'il est très important de vérif

Mais encore, pour nos étudiants Master :

- · Guide de préparation pour les nouveaux étudiants Master
- Lignes directrices des projets de semestre
- Lignes directrices des projets de master
- Stages en entreprise
- Procédure pour les étudiants
- Lire la présentation des stages SMT (PDF)

section de microtechnique

Download the presentation

We wish you a good start at EPFL and best of success for your studies !!!

