

Welcome !

Christophe Moser Directeur de section

Sebastian Gautsch Adjoint de section Responsable Master Microtechnique

Francesco Mondada Responsable Master Robotique

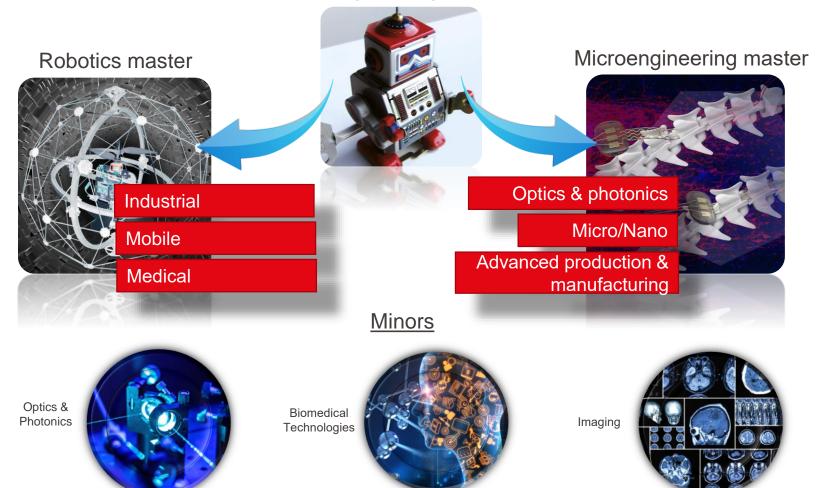
1

Isabelle Schafer Assistante Section Microtechnique

Olivier Martin Responsable Mineur Photonique

Daniel Sage Responsable Mineur Imaging

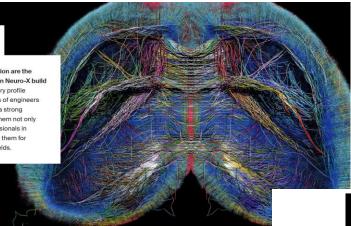
Philippe Renaud Responsable Ad. int. Mineur Technologies biomédicales



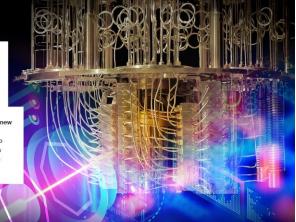
Agenda

- Link between Bachelor and Master studies
- Optional courses at the end of the Microengineering Bachelor
- Common aspects between Microengineering and Robotics Master
 - Master program structure
 - Rules and procedures
 - Semester projects
 - Minors (not mandatory)
 - Industry internship
 - Master thesis
- Microengineering Master specifics
- Robotics master specifics
- Minors
 - Photonics
 - Biomedical technologies
 - Imaging
- Beyond your studies

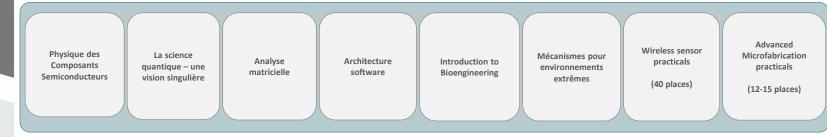
Microengineering Bachelor



But not only...


Neuro-X

Science, technology and computation are the foundations onto which engineers in Neuro-X build their expertise. Their multidisciplinary profile complements the fundamental skills of engineers and medical-domain specialists by a strong technological component, making them not only highly demanded and valued professionals in neurotechnology, but also preparing them for research in neuroscience-related fields.

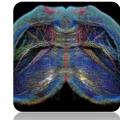

Quantum Science and Engineering

Quantum science and technology is bringing a new paradigm shift in the way we treat data, communicate, measure and compute. Thanks to their multidisciplinary profile, quantum engineers thrive in this new technology frontier that has the disruptive potential to revolutionize our society.

Optional Bachelor courses

T. M. Contraction

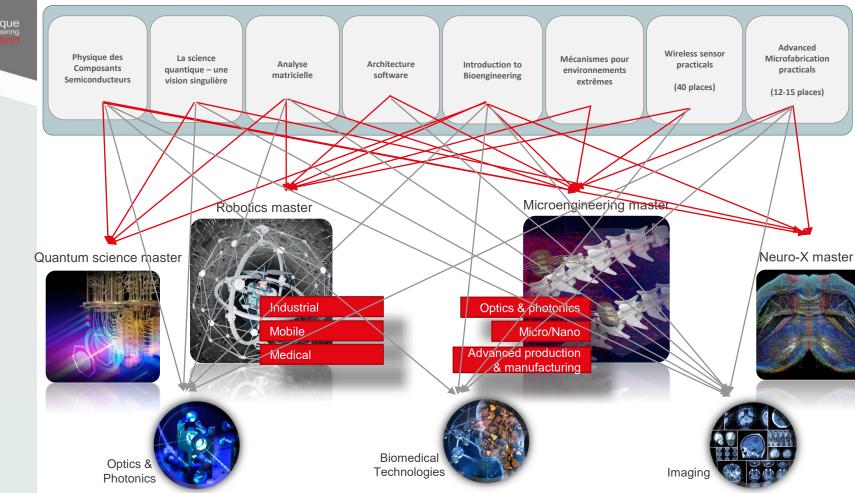
Quantum science master



Robotics master

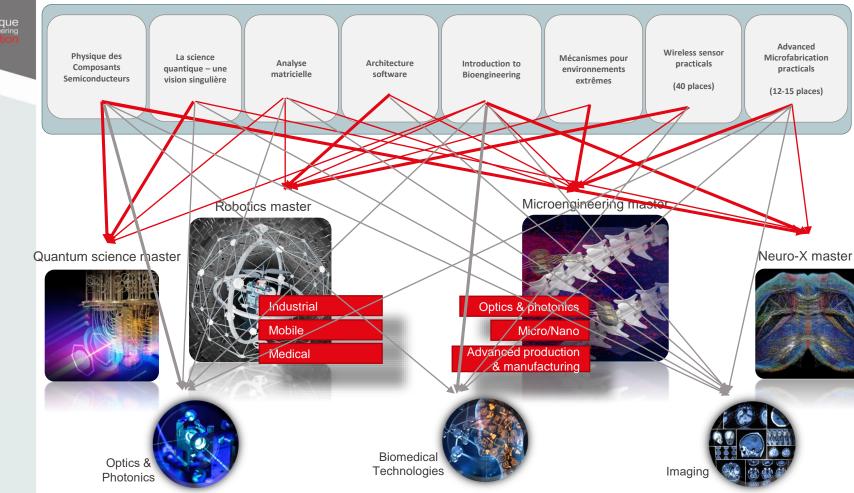
Microengineering master

Neuro-X master

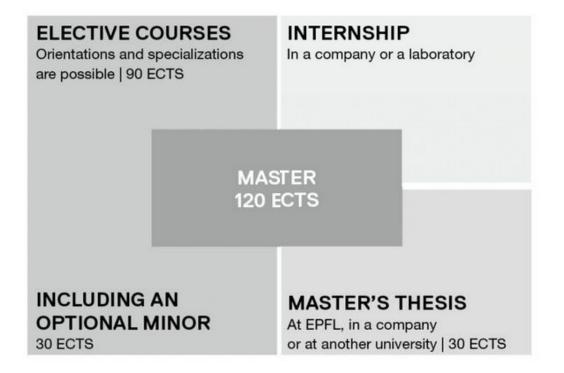


Optics & Photonics

Biomedical Technologies

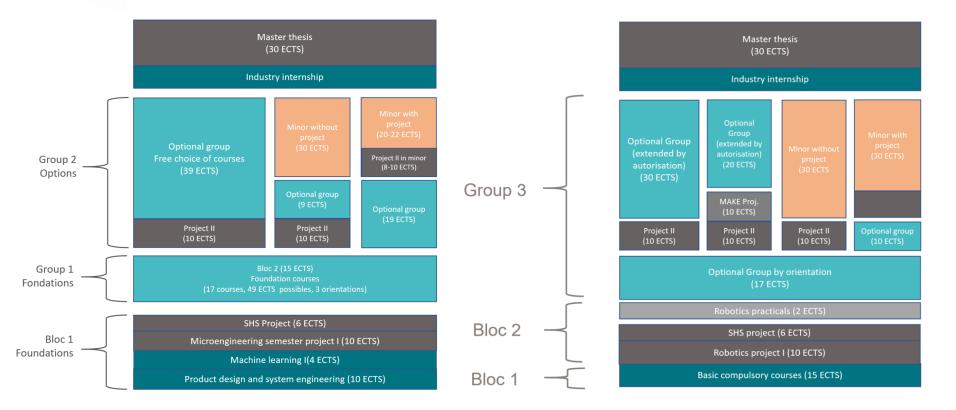


Optional Bachelor courses



Optional Bachelor courses

Master program structure


https://www.epfl.ch/education/master/study-programs-structure/

Master Program structures

Microenginering

Robotics

Your study plans online

Master project (.)

COURSES	LANGUAGE	Ŀ,	MASTER 1 E	P	Ļ	MASTER 2	P	Ļ	MP AUTUMI E	N P	L	MP SPRING	P	EXAM	CREDITS
Engineering internship credited with master project (master in Microengineering) (Stage d'au minimum 8 semaines après le 2ème semestre de Master. Inscription par la bourse aux stages) MICRO-597 / Section MT Profs divers	FR	-	-	320h	-		320h	-		320h	-	-	320h	Winter/Summer session Term paper	0
Master project in robotics MICRO-598 / Section MT Profs divers	FR/EN	-	-	-	-	-	-	-	-	900h	-	-	900h	Winter/Summer session Oral	30

Block 1

COURSES	LANGUAGE	Ŀ.	MASTER 1	P	Ŀ.	MASTER 2	P	SPECIALISATIONS/ORIENTATIONS	EXAM	CREDITS
Applied machine learning MICRO-455 / Section MT Billard	EN	4h	-	-		-	-		Winter session Written	4
Basics of mobile robotics MICRO-452 / Section MT Mondada	EN	2h	2h	-		-	-		Winter session Written	4
Basics of robotics for manipulation MICRO-450 / Section MT Bouri	EN	3h	-	-		-	-		Winter session Written	3
Model predictive control ME-425 / Section GM Jones	EN	2h	2h	-		-	-		Winter session Written	4

https://edu.epfl.ch/studyplan/en/master/microengineering/ https://edu.epfl.ch/studyplan/en/master/robotics/

Course and exam registrations

You must **register yourself** for all subjects taught in the Bachelor's and Master's programs, **including compulsory topics**. Registration is done through your secure access to the IS-Academia application:

- for subjects taught in the autumn semester: from August to the Friday of the second week of the autumn semester
- for subjects taught in the spring semester: from January to the Friday of the second week of the spring semester

https://www.epfl.ch/education/studies/en/rules-and-procedures/faq/registering-courses-exams-register/

Requirements for obtaining the master's degree

Block

A **block is passed** (and thus all the credits associated with the block are acquired) when all the subjects it contains have been examined at least once and the **weighted average of the block is 4,00 or above**.

Group

A group is passed when enough subjects in the group are passed (final grade 4,00 or above) to reach the number of credits associated with the group. Although an average is calculated, it has no bearing on the passing of the group.

Requirements for passing the internship and the Master's project

Please check the webpages dedicated to the internships and to the Master's projects.

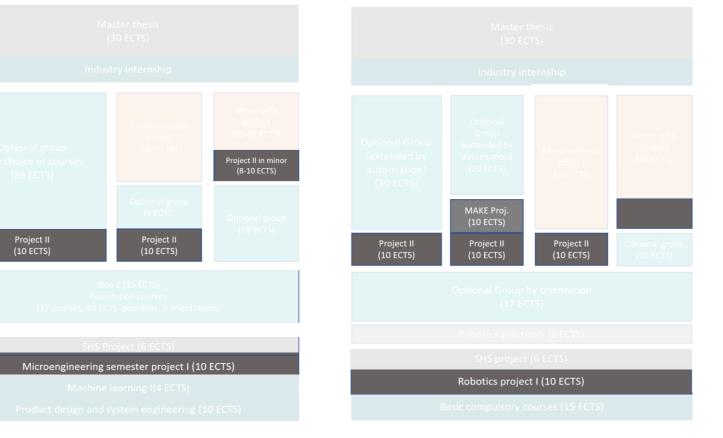
https://www.epfl.ch/education/studies/en/rules-and-procedures/pass-conditions/requirements-passing-master-degree/

Other important questions - FAQs

Microenginering

Robotics

2 mandatory semester projects



Semester projects

Microenginering

Robotics

Semester projects guidelines

		MICROENGINEERING						
Home	About	BSc in Microengineering	MSc in Microengineering	MSc in Robotics	PhD Studies	Contact		

Semester projects guidelines

Find a project

We recommend to look for your project at the end of the previous semester. Browse through the following pages

- Lab webpages dedicated to projects
- Extraction list from the IS-A project portal

These project lists are non-exhaustive and other projects can be found by contacting directly the labs of interest.

Reserve your project as early as possible. Meet with the Professor in charge and define the objectives and work to be accomplished.

IMPORTANT : If the Professor proposing the project is not affiliated with Microengineering section, the project has to submitted for validation to sebastian.gautsch@epfl.ch.

It is not allowed to take two projects during the same semester, neither to carry out two projects in the same laboratory.

Registration

Register on IS-A as soon as the portal is opened by the Academic Service. (this registration is official and mandatory, please respect the deadlines).

Attention, the semester project is non-withdrawable. Once enrolled, it is no longer possible to change.

https://sti.epfl.ch/smt/smt-semester-project-guidelines/

Finding a project

Lab websites with semester and master projects proposals

		LABORATOIRES
Institut	LAB	Laboratoire
STI-IEM	AQUA	Advanced Quantum Architecture Laboratory
STI-IBI	Biorob	Biorobotics Laboratory
STI-IEM	BNMS	Biomedical and neuromorphic microelectronic systems
STI-IGM	CREATE-Lab	Computational Robot Design & Fabrication Lab
STI-IGM	DDMaC	Data-Driven Modelling and Control Group
ENAC-IIE	DISAL	Distributed Intelligent Systems and Algorithms Laboratory

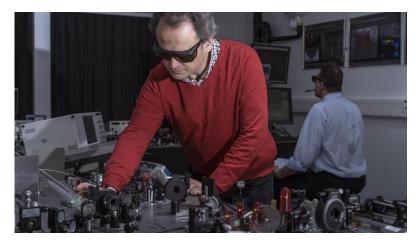
Students projects SMT

Search											
Sort by project name	Sort by project ID	Sort by professor	Sort by type								
Norphing Capabili	ities to Land on	Challenging Teri	rain -								
): 13713 Projet de Master (PC	13713 Projet de Master (PDM) EL EL Validé Dario Floreano										
Iorphing Strategy for Approaching People and Infrastructure Safely											
0: 13716 Projet de semestre N	13716 Projet de sernestre MA EL EL Validé Dario Floreano										
Pptimization Engine for Hybrid Drones' Propellers											
1: 13717 Projet de Master (PD	13717 Projet de Master (PDM) EL EL Validé Dario Floreano										

IMPORTANT :

- If the Professor proposing the project is not affiliated with Microengineering section, the project has to submitted for validation to <u>sebastian.gautsch@epfl.ch</u>
- It is not allowed to take two projects during the same semester, neither to carry out two
 projects in the same laboratory

https://sti.epfl.ch/smt/smt-lab-websites-with-semester-and-master-projects-proposals/ https://inside.epfl.ch/projets-etudiants-sti/microengineering/students-projects-smt/



Research - IEM to host your projects

EPFL ICM institute of electrical and micro engineering

IEM covers the following major technical fields:

- Electronic Circuits and Devices
- Micro-manufacturing and Micro- and Nano-technologie
- Robotics
- IoT, Computer & Communication Engineering
- Optics, Photonics and wave engineering
- · Machine learning, Information Science and Systems
- Power and Energy

Research in IEM :

- 39 Full Professors / Associate Professors / Tenure-Track Assistant Professors
- 1 SNSF-funded Professor
- 12 Adjunct Professors
- 11 Senior Scientists
- 1 Member of the US National Academy of Engineering
- 1 Member of the American Academy of Arts & Sciences
- 1 Member of the Academia Europaea
- 2 Members of Swiss Academy of Engineering Sciences
- 25 ERC grants : 12 Advanced, 6 Consolidator and 7 Starting grants since 2008

One Institute on 3 campuses

Geneva - Campus Biotech

- · Bio- and neuroengineering (Wyss center)
- Human Brain Project
- Center for neuroprosthetics

Neuchâtel - Microcity

Microengineering and nanotechnologies

Important dates

Project starting date:

• Beginning of the semester

Report hand in

- Spring semester : at the latest on Friday of the **first** week after the end of the semester
- Fall semester : at the latest on Friday of the **second** week after the end of the semester

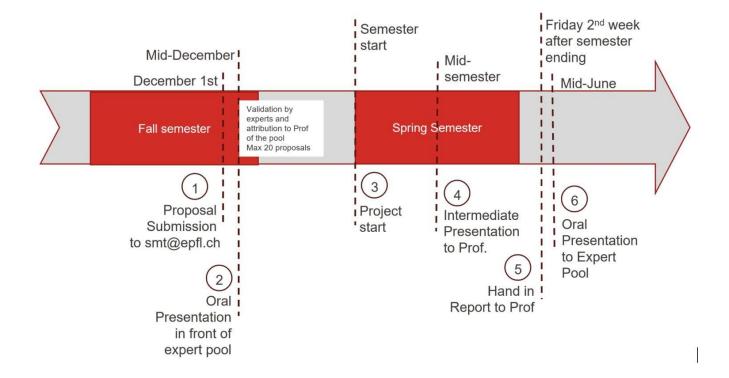
Your mark will be transferred to SAC 15 days after the report has been handed in.

IMPORTANT: The supervising Professor should confirm the exact dates to hand in the report and the oral presentation at the beginning of the project.

Guidelines

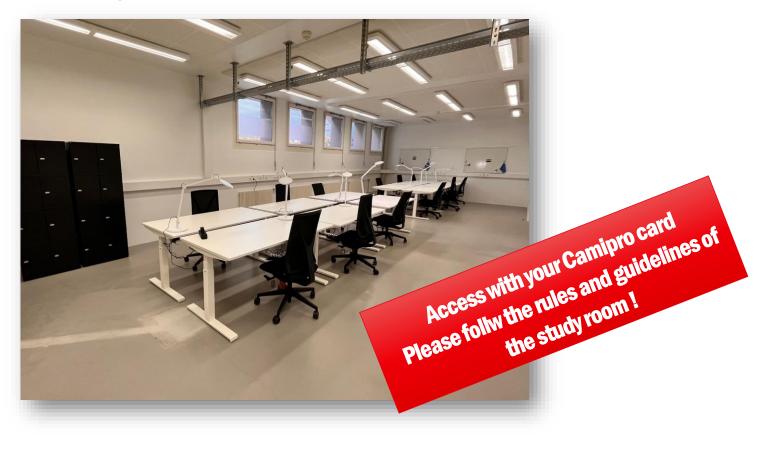
An oral presentations of the work progress at mid-semester is strongly recommended. A final presentation at the end of the project is mandatory. The dates have to be defined with the Professor <u>Recommandations for intermediate and final presentations</u> <u>Template for intermediate presentation</u> Template for final presentation

A written report is mandatory at the end of the project <u>Extensive Semester/Master thesis report template</u> <u>Example of a typical semester project report</u>


The written report will be followed by an oral defense, organized by the Professor. <u>Procedure for entering grades in IS-Academia</u>

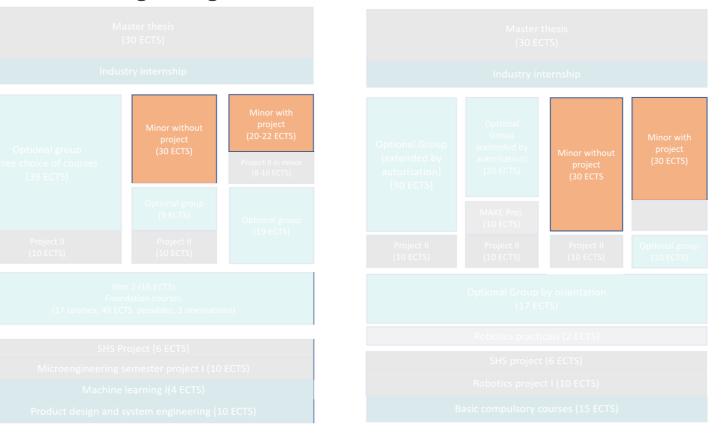
The section also recommends to complete the following form (which is a supplement to the evaluation) and to send the PDF to the Section for the student's file. <u>Project evaluation sheet (template)</u>

https://sti.epfl.ch/smt/smt-semester-project-guidelines/


Guidelines for validating an "out of the lab" semester project related to a MAKE projects

https://www.epfl.ch/education/educational-initiatives/discovery-learning-program-2/interdisciplinary-projects/ https://sti.epfl.ch/smt/smt-guidelines-for-validating-an-out-of-the-lab-semester-project-related-to-a-make-projects/

Study room in BM 0246 Exclusively for SMT Master students !



Microenginering

Robotics

Minors

A minor is a group of compulsory and optional courses from one or more Master's programs.

EPFL offers a wide choice of **disciplinary** and **interdisciplinary** minors.

Interdisciplinary minors

Interdisciplinary minors often group together courses from several Master's programs. Some consist of a multidisciplinary topic (I.E. photonics minor), others offer complementary education to the classical engineering curriculum (Management, Technology and Entrepreneurship)

https://www.epfl.ch/education/studies/en/rules-and-procedures/minors/

Minors (optional)

The student **informs the section of his choice of minor** and **selects it in the course-registration screen on IS-Academia**, **no later than the beginning of the 2nd semester** of his Master's studies.

A minor is successfully completed when **30 credits at minimum have been gained** among the approved subjects. Each subject must be successfully completed on it own merits: there is no possible compensation between the subjects. These 30 credits **add to the total for a 90-credit Master's program.**

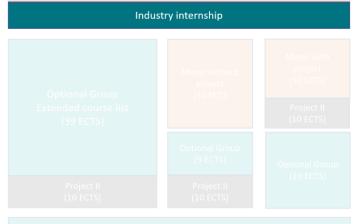
Rules and procedures:

https://www.epfl.ch/education/studies/en/rules-and-procedures/minors/

Recommended and possible Minors

				MT	RO
	Ma	aster ECTS (PdM	inclus/Master project included)	120	120
Mineurs / Minors	Туре	Section	Contact		
Energy	Interdiscipl.	GM	Maréchal F.	r	r
Imaging	Interdiscipl.	MT	Sage Daniel	r	r
Engineering for sustainability	Interdiscipl.	SIE	Gilliéron P.Y., Leterrier	r	r
Neuro-X	Discipl.	NX	Hummel F, Micera S.	r	r
Photonics	Interdiscipl.	MT	Martin O.	r	r
Physics of living systems	Interdiscipl.	SV	Persat A.	r	r
Quantum science and engineering	Discipl.	SIQ	Macris N. et Klinke H.	r	r
Biomedical technologies	Interdiscipl.	MT	Guiducci C.	r	r
Spacial technologies	Interdiscipl.	EL	Kneib JP.	r	r
Computational science and engineering	Discipl.	MA	Pouchon O.	r	с
Data and internet of things	Interdiscipl.	EL	Atienza D.	r	с
Technology management and entrepreneurship	Interdiscipl.	MTE	de Rassenfosse G.	r	с
Computer science	Discipl.	IN	Hazboun E.	с	r
Architecture	Discipl.	AR	Kochnitzky Palluel L.	С	с
Computational Biology	Interdiscipl.	IN	Salathé M.	с	с
Biotechnology	Interdiscipl.	CGC	Pick H.	с	с
Chemistry and chemical engineering	Discipl.	CGC	Marendaz JL.	с	с
Cyber security	Discipl.	IN	Hazboun E.	с	с
Data science	Discipl.	SC	Hazboun E.	с	с
Integrated Design, Architecture and Sustainability (IDEAS)	Interdiscipl.	AR	Andersen M., Rey E.	с	с
Territories in transformation and climate	Interdiscipl.	AR	Joost St.	с	с
Civil engineering	Discipl.	GC	Turberg P.	с	с
Electrical and electronic engineering	Discipl.	EL	Gay-Balmaz Ph.	С	с
Mechanical engineering	Discipl.	GM	Prenleloup A.	С	с
Systems Engineering	Interdiscipl.	MTE	Weber Th.	с	с
Life sciences engineering	Discipl.	SV	Grisoni B.	С	С
Financial engineering	Discipl.	IF	Fahlenbrach R.	с	с
Mathematics	Discipl.	MA	Pouchon O.	С	С
Physics	Discipl.	PH	Mari D.	с	с
Materials science and engineering	Discipl.	MX	Marselli B.	с	с
Environmental sciences and engineering	Discipl.	SIE	Gilliéron PY	с	С
Statistics	Discipl.	MA	Mhalla L.	с	С
Communication systems	Discipl.	SC	Hazboun E.	с	С

Recommanded in the study plans
 Choice of the courses with the advice of the initiating
 section and the person in charge of the minor



Microenginering

Master thesis

(30 ECTS)

Bloc 2 (15 ECTS) Restricted course choice (17 courses, 46 ECTS possible, 3 orientations

SHS Project (6 ECTS

Semester Project I (10 ECTS

Product design and system engineering (10 ECTS

Mandatory Industry immersion: 2 options

Internship

- Minimum duration of 2 month, up to 6 months
- Immersion into industry
- Familiarize with company processes
- Aquire specific competences
- Apply transversal skills
- Evaluation report by student and industry supervisor

Master project in industry

- A research project in the company
- Student applies the competences aquired during his master
- Supervised by a Professor from his section
- Written report and oral defense
- Monthly feedback to Professor
- 25 week duration (+1 week vacation)

An excellent opportunity

Students

- A Great incentive to ask oneself the right questions !
- Familiarize with working life
- Immerse into Industry practice
- Future Hiring opportunity

Companies

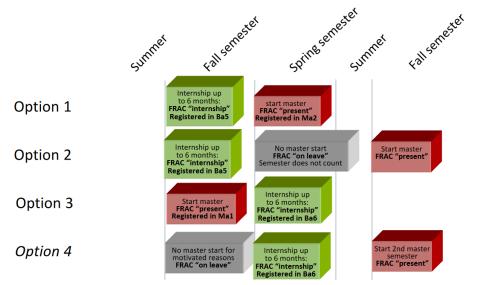
- Benefit from highly qualified students
- A new insight on current issues, innovate !
- Evaluate futur employees

🗅 EPFL

- EPFL
- A direct link to industry
- A platform to start collaborations on the research level
- Feedback from industry to improve the education of our students

Master internship evaluations

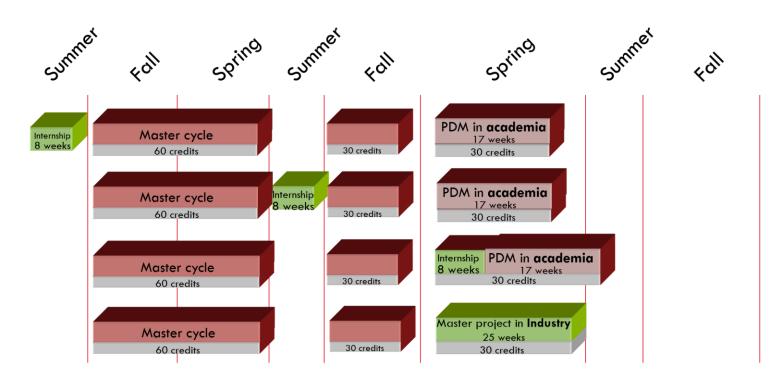
Company evaluation of over 400 students


	Excellent Good Sufficient Insufficier	t
Overall Evaluation	310	79 <mark>103</mark>
Capacity to self-evaluate and to respond constructively to feedback	280	102 13 2
Independence cess sources of information and to evaluate them	287	96 12
Ability to present and defend her/his own ideas	261	113 23 4
Interpersonal skills and engagement, including in a multicultural context	318	71 12
Communication ^{munication} (clarity, reasoning, self-confidence)	231	136 30 <mark>5</mark>
Written communication (structure, clarity, coherence of reasoning)	224	155 14 4
Quality of the work delivered	287	99 105
Integration in the Capacity to work in teams	297	77 112
professional world professional ethical codes	334	50 <mark>8 2</mark>
Work planning, monitoring of activities, and management of emergent issues Planning and management Evaluation of resources required	239	135 20 4
Plaining and management Evaluation of resources required	216	135 13 1
of work tasks Definition of work objectives and management of priorities	221	146 28 4
Mastery of domain-specific methodologies Application of scientific	238	142 16 <mark>2</mark>
Application of Scientific Ability to resolve complex problems	269	111 15 6
Ability to resolve complex problems and technical knowledge Technical skills and knowlede	279	111 74
	% 10% 20% 30% 40% 50% 60%	70% 80% 90% 100%

Speaker

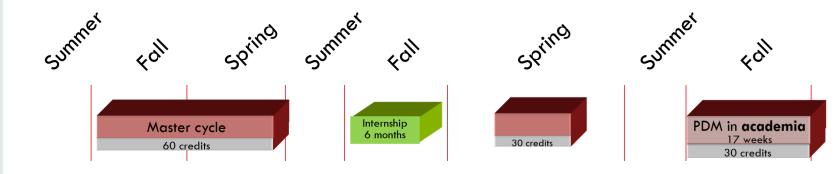
Break between bachelor and Master studies

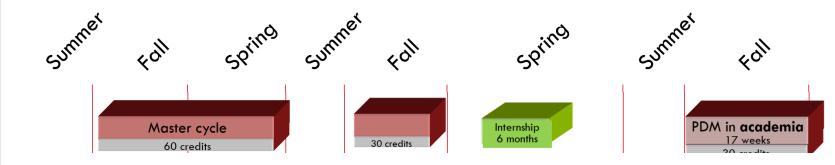
If you have finished your bachelor and would like to take an interim year to do your mandatory industry internship for your master, <u>the following academic rules</u> and FRAC status' apply:



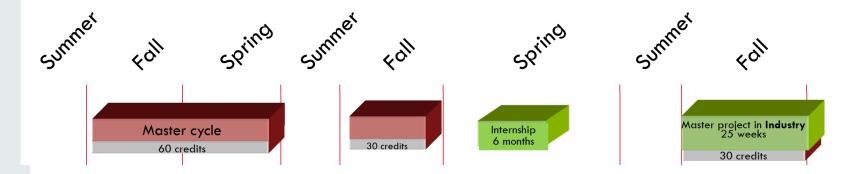
In option 4 the fall semester will be accounted to your master studies, except if you are doing your army or civil service

Tend 1


https://www.epfl.ch/education/studies/en/special-study-arrangements/interruptionstudies/interruption-studies-bachelor-master/



Master thesis (PDM) in academia in foreign Universities: 25 weeks



Industry internship

Master thesis

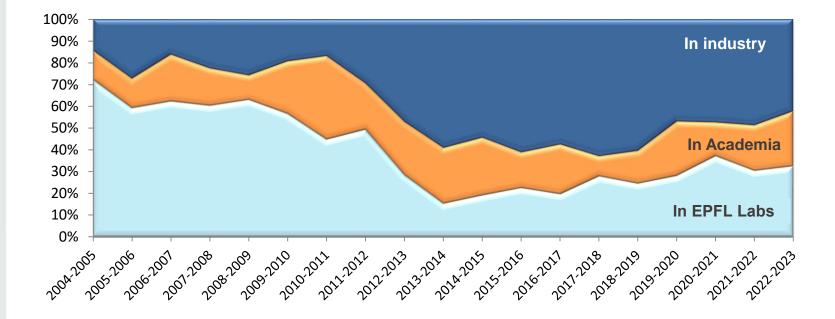
Microenginering Master thesis (30 ECTS)

Bloc 2 (15 ECTS) Restricted course choice (17 courses, 46 ECTS possible, 3 orientations

SHS Project (6 ECTS

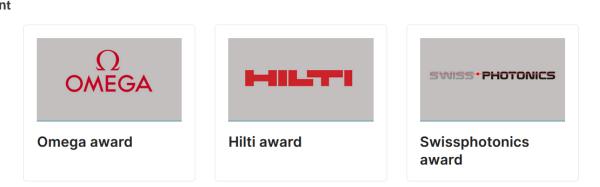
Semester Project I (10 ECTS

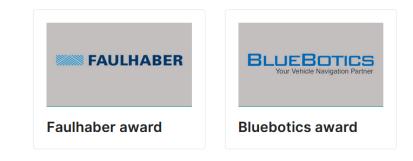
Product design and system engineering (10 ECTS



Master thesis location

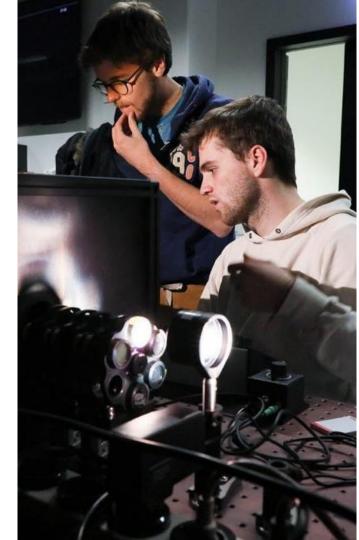
Students have different option to complete the Master thesis:


- In a lab @ EPFL
- In a foreign University, co-supervised by a Prof from EPFL
- In Industry, co-supervised by a Prof from EPFL



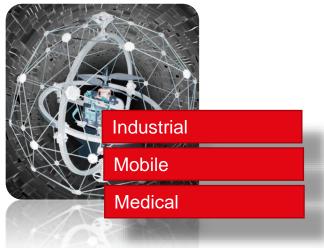
Postulations Prix PDM 2023

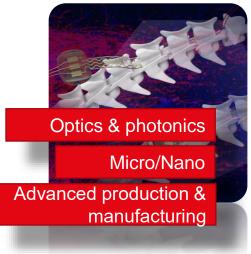
Prix Section étudiant **Prix Bluebotics** MT MT MT MT ME MT Prix Faulhaber MT MT MT MT **Prix OMEGA** MT MT EL MT MT **Prix Swissphotonics** MT MT MT MX MX



Master projects guidelines

- Calendar
- Choosing a master project in a laboratory
- Master project in another university
- Project's objectives
- Master projects in Industry (PDMe)
- Registration
- Hand-in procedure
- Evaluation method
- Student prizes


https://sti.epfl.ch/smt/master-projects-guidelines/



Specifics about the 2 Masters

Robotics master

Microengineering master

Specifics of the Microengineering Master

 Faculté des Sciences et Techniques de l'Ingénieur (STI)

What is Microengineering?

Microengineering is a branch of engineering that deals with the design and fabrication of very small structures and devices, typically on the scale of micrometers or smaller. It involves the use of microfabrication techniques to create complex systems and machines with dimensions that are often measured in microns.

Microengineering encompasses a wide range of applications, including micro-electronics, micro-electromechanical systems (MEMS), microfluidics, nanotechnology, and bioengineering. Some examples of microengineering products include microsensors, micro-actuators, micro-optics, microfluidic chips, and microelectronic devices.

Microengineering plays an increasingly important role in many fields, including medicine, electronics, materials science, and environmental monitoring. By creating devices that are small, efficient, and precise, microengineering is enabling new applications and advancing scientific understanding in a variety of areas.

EPFL Building on history, The Swiss Health Valley

microtechnique

39 research institutes 1'000 companies 5'000 students

Admissions Internationales Master Microtechnique

🗆 Chine

Beihang University, Beijing Sun Yat-Sen University, Guangzhou Xi'an Jiaotong University

Zhejiang University, Hangzhou

🗆 Suisse

Ecole polytechnique fédérale de Lausanne EPFL

Haute Ecole d'ingénierie et de gestion du Canton de Vaud HEIG-VD

🗏 Etats-Unis

Harvey Mudd College, Claremont University of Michigan, Ann Arbor

🗏 Taïwan

National Taipei University of Technology, Taipei

Allemagne

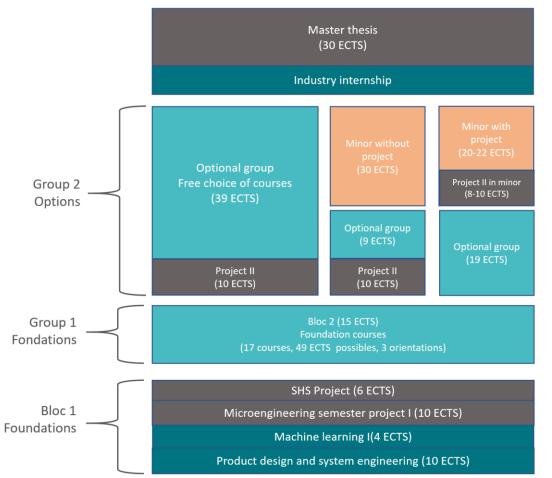
Technische Universität München

🗏 Turquie

Istanbul Technical University

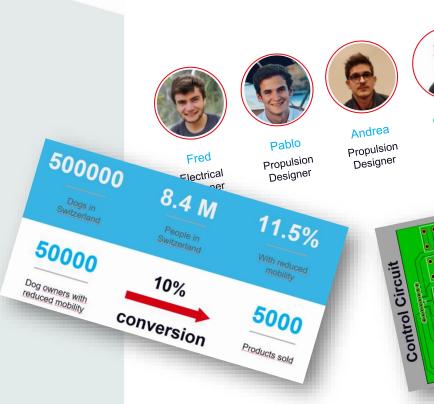
🗆 Italie

Politecnico di Milano


🗏 Canada

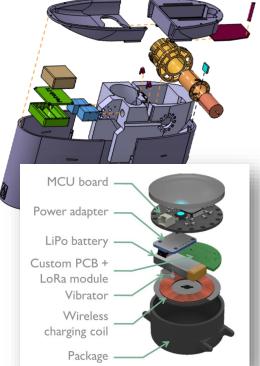
McGill University, Montreal

1 passerelle HES 2 bachelor SV 1 bachelor GM 48


Master Program structure

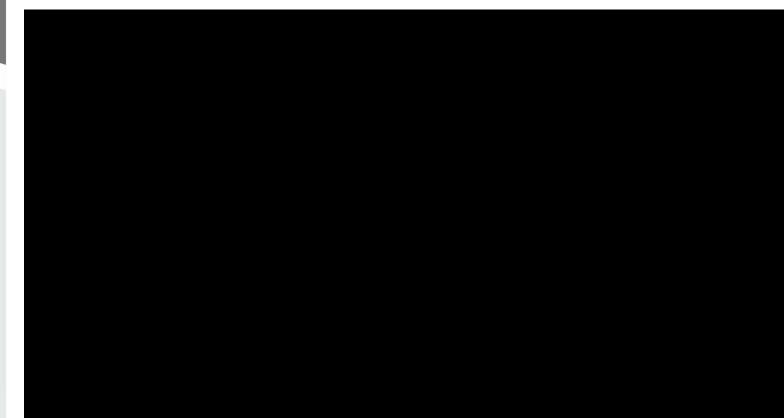
Products Design and Systems Engineering

Foundational course in the first semester letting groups of students create their own product from concept to prototype, including a first marketing plan. With invite speakers from Academia and Industry.

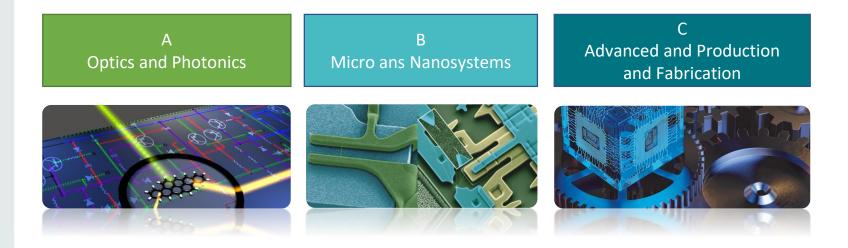

Hugo

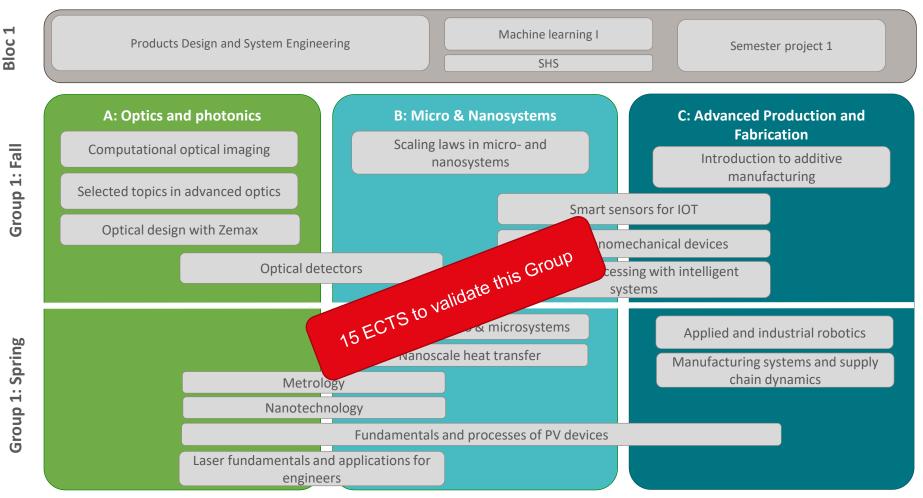
Programmer

Charlotte CAD designer

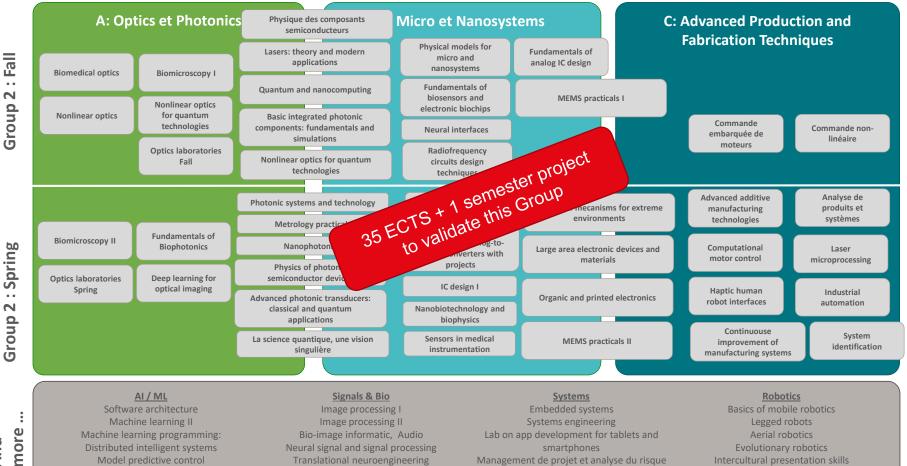

Florian

Business developer


Product design example – Pill'it

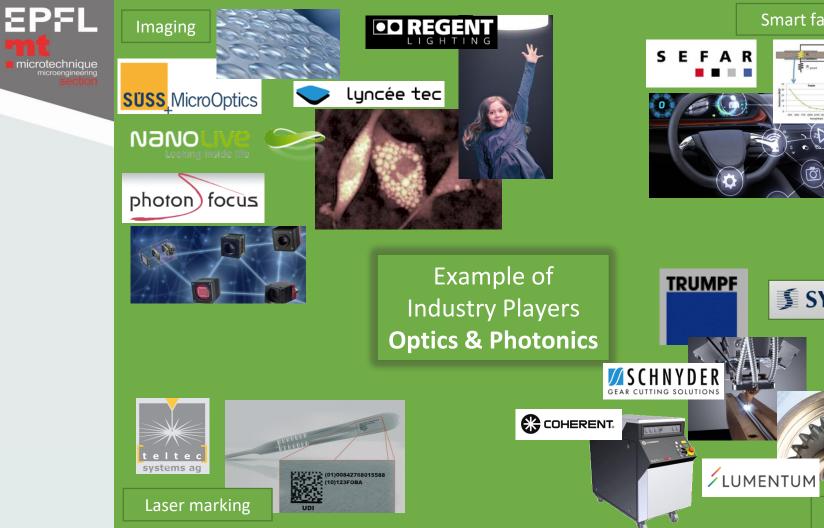


Orientations – Microengineering Master


Orientations are meant as **guidelines** to help students choose their courses

Orientations - Master Microengineering

Orientations - Master Microengineering


Machine learning programming: Distributed intelligent systems Model predictive control Advanced control systems

And

Bio-image informatic. Audio Neural signal and signal processing Translational neuroengineering Applied biomedical signal processing Introduction to Bioengineering

Lab on app development for tablets and smartphones Management de projet et analyse du risque Space mission design and operations

Aerial robotics **Evolutionary robotics** Intercultural presentation skills

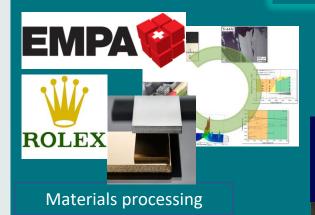
Smart fabric printing

SYNOVA

Laser cutting

Advanced manufacturing

BÜHLER



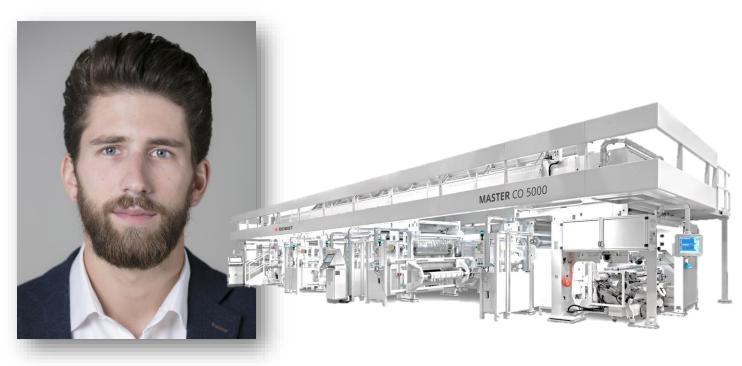
Supply chain

Example of Industry players **Advanced Manufacturing** & Production

Movie to learn more ...

Section de Microtechnique EPFL

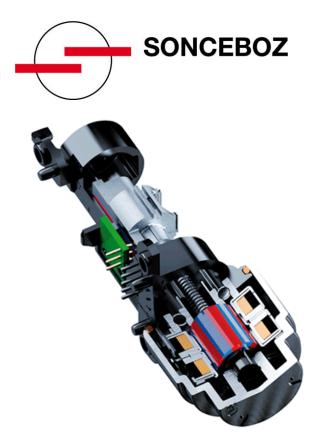
 Faculté des Sciences et Techniques de l'Ingénieur (STI)



Faites défiler la page pour afficher plus de détails

6 🍌

Léonard Badet Head of Group Technology – Bobst Master Microtechnique terminé en 2017


Alumni Testimonies

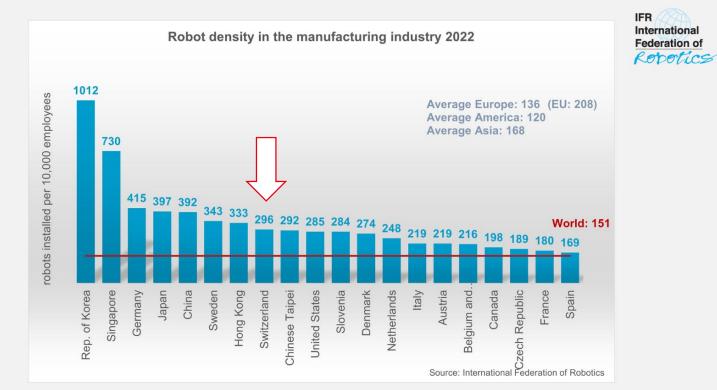
Damien Wittwer Business Unit Manager Associate Master Microtechnique terminé en 2010

60

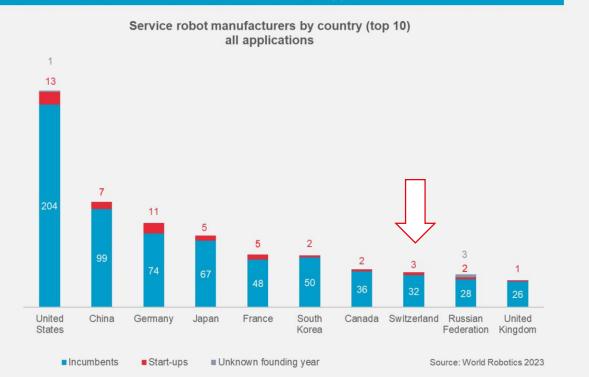
https://tube.switch.ch/videos/J6tEwLlxYr

Alumni Testimonies

Adrien Briod Founder and CTO Master Microtechnique terminé en 2009 Thèse doctorat EPFL 2013


Specifics of the Robotics Master

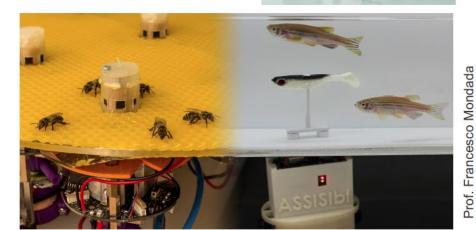
 Faculté des Sciences et Techniques de l'Ingénieur (STI)


Switzerland in top 10 in automatisation

Top 10 in # of manufacturers of service robots

The United States is home of most service robot suppliers

IFR International Federation of Reportics



Robotics

Prof. Aude Billard

Prof. Silvestro Micera

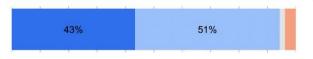
Prof. Dario Floreano

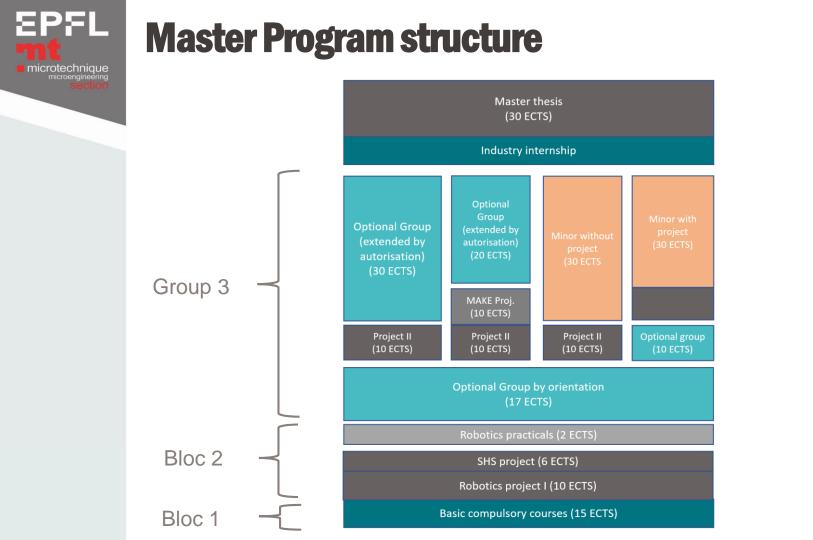
Prof. Auke Ijspeert

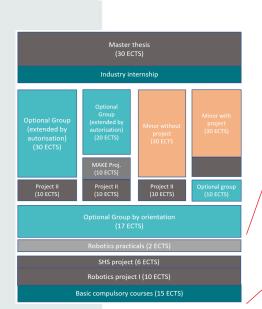
Admission Internationales Master Robotique

Suisse	36	🗏 Iran	2
Ecole polytechnique fédérale de Lausanne EPFL	35	Sharif University of Technolog	y, Tehran 2
Haute Ecole du paysage, d'ingénierie et d'architecture	1	Turquie	2
Etats-Unis	7	Bogazici University, Istanbul	1
East Tennessee State University, Johnson City	1	Sabanci University, Istanbul	1
Georgia Institute of Technology, Atlanta	1	France	2
Massachusetts Institute of Technology, Cambridge	1	CentraleSupelec	1
University of California, Berkeley (UCB)	1	Ecole Polytechnique, Palaisea	Autre bachelor EPFL:
University of California, San Diego	1	🗏 Inde	
University of Colorado, Boulder	1	Indian Institute of Technology	GM: 23 GM
University of Illinois at Urbana-Champaign	1	Indian Institute of Technology	$C \setminus I \in C$
Italie	6	🗏 Singapour	SV: 6
Politecnico di Milano	2	National University of Singapo	EL: 2
Politecnico di Torino	3	🗏 Grèce	
Università degli Studi di Firenze	1	National Technical University	Info & Syscom: 2
Chine	6	Bosnie-Herzégovine	
Harbin Institute of technology	1	University of Sarajevo	PHYS: 1
Shanghai Jiao Tong University	2	Mexique 1	
Tsinghua University, Beijing	3	Instituto Tecnológico y de Estudios Superiores de Moni 1	
Liban	4	Australie 1	
American University of Beirut	4	University of Melbourne 1	
Canada	2	🗏 Royaume-Uni	1
Polytechnique de Montréal	1	University of Edinburgh	1
University of Toronto	1		

Diversité (écoles de provenance de nos candidats externes)


Technische Universität München	Allemagne
Technische Universität Wien	Autriche
Université Catholique de Louvain	Belgique
McGill University, Montreal	Canada
University of British Columbia, Vancouver	Canada
University of Toronto	Canada
University of Waterloo	Canada
Shanghai Jiao Tong University	Chine
The Hong Kong University of Science and Technology	Chine
Tsinghua University, Beijing	Chine
Universitat Politècnica de Catalunya, Barcelona	Espagne
Cornell University, Ithaca	Etats-Unis
Harvard University, Cambridge	Etats-Unis
University of California, Santa Barbara	Etats-Unis
University of Illinois at Urbana-Champaign	Etats-Unis
Ecole Polytechnique, Palaiseau	France
National Technical University of Athens	Grèce
Indian Institute of Technology Delhi	Inde
Indian Institute of Technology Kanpur	Inde
Indian Institute of Technology Madras	Inde
Politecnico di Milano	Italie
Politecnico di Torino	Italie
Università degli Studi di Roma "La Sapienza"	Italie
Delft University of Technology	Pays-Bas
Imperial College London	Royaume-Uni
University of Edinburgh	Royaume-Uni
Nanyang Technological University	Singapour
National University of Singapore	Singapour
Bogazici University, Istanbul	Turquie




Quality

8.Please give your general appreciation and comments on the Robotics Master

8.1) Overall, I find the Robotics Master of high quality

PFL

microtechnique

Robotics practicals (2 ECTS)

SHS project (6 ECTS)

Robotics project I (10 ECTS)

Basic compulsory courses (15 ECTS)

Structure

Compulsory courses

Foundations :

- Basics of Mobile Robotics (4 ECTS; Mondada) fall
- Basics of robotics for manipulation (3 ECTS; Bouri) fall

Algorithms and Methods for Robotics :

- Machine learning I (4 ECTS; Billard) fall
- Model Predictive Control (4 ECTS; Jones) fall

Practicals:

Robotics Practicals (2 ECTS; Mondada + all) - spring

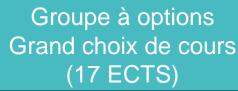
Orientations

17 optional credits chosen among the optional courses of the chosen orientation, then free choice in robotics options.

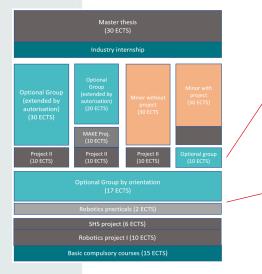
Industrial Robotics

Medical Robotics

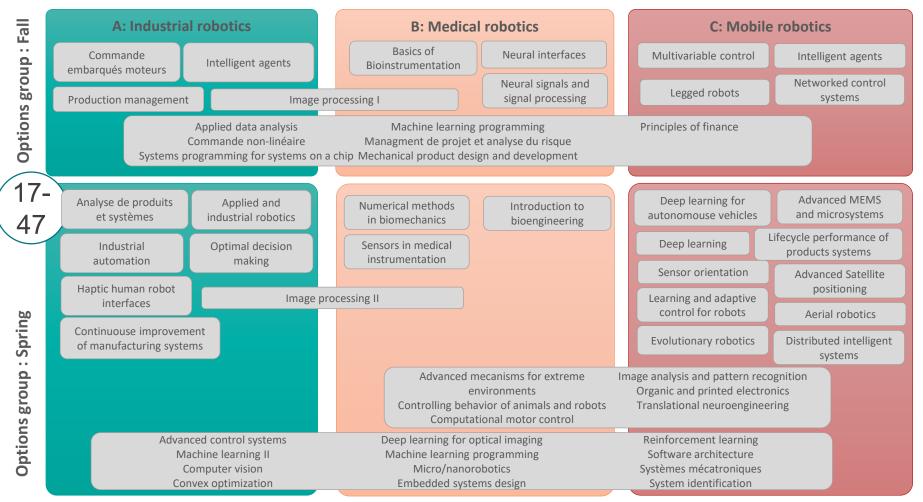
Mobile robotics



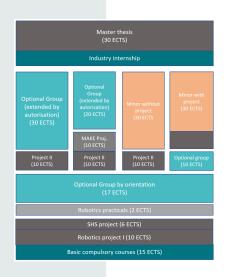
Orientations


Students must choose 17 ECTS of optional courses in one of these three orientations:

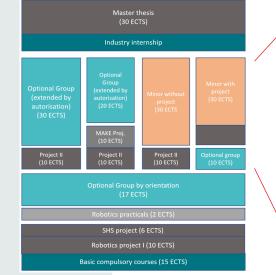
A Industrial roboticsB Medical roboticsC Mobile robotics

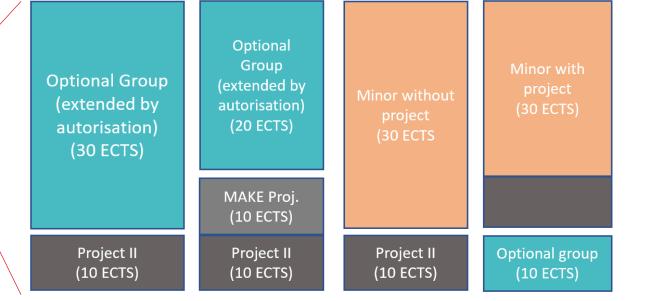

Optional courses and orientation		в	C	50
Advanced control systems	A	B	C	3
Advanced machine learning	A	B	C	4
Advanced MEMS & microsystems	^	D	C	3
Advanced satellite positionning			C	4
Analyse de produits et systèmes	А		0	2
Analysis and modeling of locomotion	~	в	С	4
Biomaterials		B	C	4
Commande embarquée de moteurs	А	D		2
Computational motor control	~	B	С	4
Computer vision	А	B	C	4
Conception mécanique intégrée	A	D	0	3
Continuous improvement of manufacturing systems	A			4
Controlling behavior in animal and robots	^	в	С	4
Deep learning	А	B	c	4
Distributed intelligent systems	~	D	C	5
Embedded systems	Α	в	C	4
Evolutionary robotics	A		C	3
Flexible bioelectronics		в		4
Flying robots			С	4
Fundamentals of computer aided manufacturing	А		C	5
Pundamentals of computer assed manufacturing Pundamentals of neuroengineering	A		С	4
Haptic human robot interfaces	А			3
How technology shapes the workplace of the future	A	в	С	3
Image analysis and pattern recognition	A	B	C	4
Image processing I		B		3
Image processing I		B		3
Industrial automation	А	D		3
Industrial automation Industry dynamics, models & trends	A			4
Intelligent agents	A		С	4
Interdisciplinary project	A		C	10

riodecton management				5
Real-time embedded systems	А	В	С	4
Robotique industrielle et appliquée	A			2
Sensorimotor neuroprosthetics		В		4
Sensor orientation			С	4
Sensors in medical instrumentation		В		3
Signal processing for functional brain imaging		В		3
System identification	А	В	С	3
Systèmes mécatroniques	А	В	С	5



Master in Robotics - Orientations


Orientation courses examples



2021-2022	ROBOTICS - Options		
Code	Matières	Enseignants	Crédits
MICRO-502	Aerial robotics	Floreano	3
MICRO-515	Evolutionary robotics	Floreano	3
MICRO-570	Advanced machine learning	Billard	4
EE-559	Deep learning	Fleuret	4
MICRO-514	Flexible bioelectronics	Lacour S.	4
EE-451	Image analysis and pattern recognition	Thiran JP.	4
MICRO-462	Learning and adaptative control for robots	Billard	4
MICRO-455	Applied machine learning	Billard	4
MICRO-553	Haptic human robot interfaces	Bouri	3
MICRO-401	Machine learning programming	Billard	2
BIOENG-404	Analysis and modelling of locomotion	Aminian/Ijspeert/Courtine	4
BIOENG-456	Controlling behavior in animals and robots	Ramdya	4
CIVIL-459	Deep learning for autonomous vehicles	Alexandre Alahi	6
ENG-466	Distributed intelligent systems	Martinoli	5
CS-487	Industrial automation	Tournier/Sommer	3
MICRO-507	Legged robots	ljspeert	3
ENV-548	Sensor orientation	Skaloud	4

Free options

Short Movie to learn more

0:31 / 3:29

Faites défiler la page pour afficher plus de détails

.....

Student Testimony

Sébastien de Rivaz about the Robotics Master

Student Testimony

Arwen Blanche Giraud about the Robotics Master

Alumni Testimonies

Adrien Briod Founder and CTO Master Microtechnique terminé en 2009 Thès doctorat EPFL 2013

Section Minors

mt EPEL section Photonics minor 2023-24

Projet obligatoire du mineur en Photonique			
Project in photonics	Divers enseignants	10	
Bases en photonique pour étudiants			
n'ayant aucune formation en photonique			
Ingénierie optique	Achouri/Martin O.	6	
Foundations of photonics			
Basic integrated photonic components: fundamentals and simulations	Benea-Chelmus	4	
Laser fundamentals and applications for engineers	Moser	3	
Lasers: theory and modern applications	Moser Ch./Kippenberg	4	
Nonlinear optics	Roke	3	
Nonlinear optics for quantum technologies	Gelland	4	
Optics laboratories	Psatts/Pu	3	
Photonic systems and technology	Brès	4	
Physics of photonic semiconductor devices	Grandjean	4	
Quantum electrodynamics and guantum optics	Kippenberg	6	
Quantum optics and quantum information	Brantut	6	
Quantum physics III	Yazyev	6	
Selected topics in advanced optics	Martin O.	3	
Semiconductor physics and light-matter interaction	Butté	4	
Advanced photonic transducers: classical and quantum applications	Benea-Cheimus	3	
Applied photonics			
Fundamentals & processes for photovoltaic devices	Balit	3	
Fundamentals of biophotonics	Radenovic	3	
Image processing I	UnsenVan de Ville	3	
Image processing II	Liebling/Sage/Unser/Van de Ville	3	
Imaging optics	Psatis	3	
Laser microprocessing	Hotmann	2	
Microfabrication technologies	GijsBrugger	4	
Nanophotonics	Moselund	3	
Optical Design with ZEMAX OpticStudio	Pu	3	
Optical detectors	Besse	3	
Organic and printed electronics	Briand/Subramanian	2	
Biomedical photonics			
Biomedical optics	Wagnières	3	
Biomicroscopy I	Altug	3	
Biomicroscopy II	Altug + Seitz A.	4	
Photomedicine	Wagnières	2	

Discover the world of photonics

Explore cutting-edge technologies to control electrons and photons

Contact : olivier.martin@epfl.ch

///				
		section		
/Im	89			
m	10	202	3	24

Projet of

Project in

Bases of

Mathema Autres o Instrum Imaging of Metrology Metrology Optical de

Electron Fundam Image Pri Image an Image pro Image pr Deep lea Lab in sig Computer Computer Visual inter Mathemat

Applicat Bioimage Biomicro Biomicro Fundame Neural ai Image pr Quantitat Sensing

maging	Divers enseignants	8	A/P
imagerie			
s of imaging (starting 24-25)	Unser/Simeoni/Guizar	3	A
m //////			
tation and Optics			
aca	Psalts	3	A
	Charbon/Fantner/Bruschini	3	P
practicals	Charbon/Fantner/Bruschini	2	P
ectors	Besse	3	A
croscopy: advanced methods	Hébert/Duncan	3	P
tals of biophotonics	Radenovic	3	P
cessing and Analysis			
ysis and pattern recognition	Thiran	4	P
essing I	Unser/Van de Ville	3	A
essing II	Unser/Van de Ville/Liebling/Sage	3	P
ing for optical imaging	Psalts	3	P
al and image processing	Thiran	4	P
anal photography	Süsstrunk	5	P
ision	Fua	4	P
ligence : machines and minds	Zamir	5	P
cal foundations of signal processing	Fageot/Simeoni/Bejar	6	A
n-Specific Courses	~ / / / / / /		
nformatics	Seitz/Sage	1	P
opyl	Altug	3	AP
opy II	Altug/Seitz Gruetter	4	P
als of biomedical imaging	Gruetter Micera/Van De Ville	6	
al and signal processing			A
essing for Earth observation imaging for civil engineering	Tula Andó	43	A
d spatial modeling for earth observation	Skaloud, Berne, Tuia	3 5	P
		2	A
Timage I	Lugon	3	A

inlock the power of ima

Dive into this fascinating field covering a large panel of engineering sciences

Contact : daniel.sage@epfl.ch & laurene.donati@epfl.ch

Biomedical technologies minor 2023-24

EPFL

Projet of

Project in

Bases bi

Autres Analog ci Applied b Ricelector

Ingénier Light lig Mechan

medical technologies	Divers enseignants	8
édicales		
physics of the cell	Manley	3
gy and biochemistry for engineers	Zufferey	- 4
per systèmes	Roy	4
hysiology and instrumentation	Radenovic	2
///////		
ts for biochip	Carrara/Schmid/Skrivervik	3
edical signal processing	Lemay	4
s and biomedical microelectronics	Schmid	3
ormatics	Sage/Seitz	1/4
instrumentation *	Merten	4
al neurosciences : neuronal dynamics	Genstner	5
s of the cardiovascular system	Stergiopulos	//3
s of the musculoskeletal system	Pioletti	5
ptics	Wagnières G.	3
yt (Altug	13
y II	Altug+Seitz A.	- 4
design	Carrara	13
physics of biological systems	Rahi Sahand J.	114
s of biomedical imaging	Gruetter	- 4
s of biophotonics	Radenovic A.	13
s of biosensors and electronic biochips	C. Guidupa	3
lique	Achouri/Martin O.	6
and interfaces	Roke S.	6.4
ogy: how mechanics regulate life	Persat/Sakar	3
on technologies	Brugger/Gijs	1.4
nology and biophysics	Fierz B.	3
ces	Lacour	6
s and signal processing	Micera/Van De Ville	6
e: cellular and circuit mechanisms	Crochel/Petersen	5
esearch strategies in personalized health	Trono	4
athods in biomechanics	Terrier A.	3
edical instrumentation	Chétélat/Ionescu	3
neuroengineering	Blanke/Courtine/Hummel/Micera	6

Join this program to transform the way we understand and treat the human body

Contact : carlotta.guiducci@epfl.ch

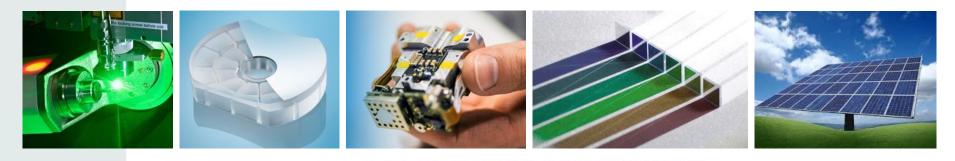
https://sti.epfl.ch/wp-content/uploads/2023/02/Mineur-Technologies-Biomedicales.pdf https://sti.epfl.ch/wp-content/uploads/2023/02/Prsentation_Mineur-Photonique.pdf https://imaging.epfl.ch/minor-in-imaging/

Mineur en Photonique

NILLING COLUMN

ACCOUNTS OF

 Faculté des Sciences et Techniques de l'Ingénieur (STI)

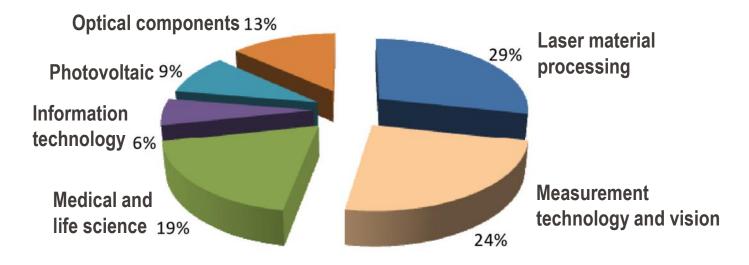

Photonics in Switzerland – e.g. Optical components

CHF 400 Mio turnover

• Some large companies and many Small & Medium Enterprises:

ABB, Alpes Laser, ams-OSRAM, Axetris, Balzers Optics, Lumentum Ultrafast Lasers, Escatec, Exalos, Feinwerkoptik Zünd, Fiberoptic, FISBA, Fischer Connectors, Heptagon/AMS, id Quantique, IMT Masken und Teilungen, Industrial Laser Electronics and Engineering, Insolight, Leica, Leister, LESS, Logitech, Mikrop, Omnisens, Onefive, OVD-Kinegram, Silitec Fibers, Sinar, Rainbow Photonics, Schott Suisse, Spectros, Suss Microoptics, SwissOptic, Thin Film Physics, Time-Bandwidth Products, Victor Kyburz, Volpi, Vectronix WZW Optic, Xenlux, Zünd Precision Optics... ... and many, many more !

55*PHOTONICS



Photonics and industry

- One of the five key enabling technologies identified by the European Commission
- € 447 billion world market, growing at a rate of 6.2%
- CHF >4 billions Swiss photonics industry, ~ 100 companies,

>10'000 highly skilled collaborators:

SWISS*PHOTONICS

Context for the Minor in Photonics

- Photonics is widespread at EPFL: Physics, Chemistry, Microengineering, Electrical Engineering, Bioengineering, Architecture...
- Very successful Doctoral Program in Photonics
- Large photonics faculty body in the Microengineering Section, where photonics is one of the focuses
- The minor in photonics bundles these competencies to propose a high level photonics degree

Objectives

- Educate students in the science of optics and photonics
- Prepare the students for their future in industry or academia
- Propose a balanced study plan between theory and practical work

Courseplan

CODE	MATIERES	ENSEIGNANTSsous réserve dET DECOUR		REDITSECTS	NBRE PLACES	PERI DES C	
						AUT	PRI
Groupe "Mi	naur"			30			
	atoire du mineur en Photonique						
MICRO-488	Project in photonics	Divers enseignants		10		Α	P
10100-400		Divers criscignants	-	10		~	
Bases en pl	otonique pour étudiants n'ayant aucune formation en photonique						
MICRO-321(a	a)Ingénierie optique (pour MT)	Martin + Achouri/Santschi	МТ	6		Α	
Foundation	s of photonics						
MICRO-471	Fundamentals of integrated photonic components (pas donné en 2024-25)	Benea-Chelmus	MT	4	20	Α	
MICRO-426	Laser fundamentals and applications for engineers	Moser	MT	3			Р
MICRO-422	Lasers: theory and modern applications	Moser Ch./Kippenberg + Moser	MT	4		Α	
PHYS-501	Nonlinear optics	Roke	MT	4		A	P
PHYS-470	Nonlinear optics for quantum technologies	Galland	PH	4		A	P
MICRO-423	Optics laboratories (spring)	Psaltis/Pu	MT	3			P
MICRO-424	Optics laboratories (autumn)	Psaltis/Pu	MT	3		Α	
E-440	Photonic systems and technology	Brès	EL	4			Р
PHYS-434	Physics of photonic semiconductor devices	Grandjean	PH	4			P
PHYS-453	Quantum electrodynamics and quantum optics	Kippenberg	PH	6		Α	
PHYS-454	Quantum optics and quantum information	Brantut	PH	6			Р
PHYS-425	Quantum physics III	Yazyev	PH	6		А	
MICRO-420	Selected topics in advanced optics	Martin O.	MT	3		A	
PHYS-433	Semiconductor physics and light-matter interaction	Butté	PH	4		A	
MICRO-410	Classical and quantum photonic transducers	Benea-Chelmus	MT	3			Р
Applied pho	Itonics						
MICRO-565	Fundamentals & processes for photovoltaic devices	Ballif	MT	3			Р
BIO-443	Fundamentals of biophotonics	Radenovic	SV	3			P
MICRO-511	Image processing I	Unser/Van de Ville	MT	3		А	
MICRO-512	Image processing I	Liebling/Sage/Unser/Van de Vill	MT	3		~	Р
VICRO-421	Imaging optics Computational Optical Imaging	Psaltis	MT	3			P
MICRO-520	Laser microprocessing	Hoffmann	MT	2			P
VICRO-320	Microfabrication technologies	Brugger/Gijs/Lacour	MT	4		Α	
MICRO-516	Nanophotonics	ladanza/Moselund + Moselund	MT	3			Р
VICRO-510	Optical Design with ZEMAX	Pu	MT	3		А	-
VICRO-523	Optical detectors	Besse Bruschini	MT	3		A	
AICRO-505	Organic and printed electronics	Briand/Subramanian	MT	2		~	Р
Biomedical	hotonics						
	Biomedical optics	Wagnières	SV	3		Α	
MICRO-561	Biomicroscopy I	Altug	MT	3		A	
VICRO-562	Biomicroscopy II	Altug + Seitz A.	MT	4		~	P
CH-448	Photomedicine	Wagnières	CGC	23			P

Further information

please do not hesitate to contact me olivier.martin@epfl.ch

Faculté des Sciences et Techniques de l'Ingénieur (STI) Mineur en Technologies Biomédicales

MEDTECH EN SUISSE

L'ESSENTIEL EN BREF

La Suisse est l'un des principaux sites pour l'industrie mondiale des technologies médicales (ou medtech). En effet, les techniques médicales y tiennent une place inégalée, tant dans le PIB qu'en proportion des actifs. La Suisse est dotée de sites de recherche de grande qualité et d'un système de santé très développé, qui attend des produits à la hauteur de ses exigences et stimule l'innovation. Elle est ainsi un pays extrêmement attractif pour la recherche, le développement et la production dans le secteur des technologies médicales.

Top 10 des entreprises en technologies médicales

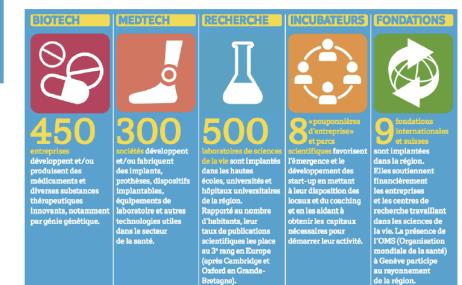
par nombre d'employés en 2017

J&J Medical	Zimmer Biomet
Roche Diagnostics	Straumann
Biotronik	B. Braun
Sonova	Ypsomed
Medtronic	Dentsply Sirona

CHIFFRES-CLÉS

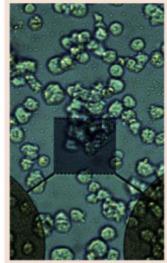
Source : SMTI, 2018

Sources : SMTI, 2018



UNE INDUSTRIE ROMANDE 5000 +10%paran 80à

sont actifs dans le secteur


tel est le taux de croissance des secteurs de la biotech et de la medtech | exportées

des technologies médicales produites en Suisse sont

MINOR IN BIOMEDICAL TECHNOLOGY

The Minor in Biomedical Engineering complements the engineering programmes offered at EPFL, providing additional skills in the field of biomedical sciences and technologies.

The programme includes courses giving a general basis in biomedical sciences as well as a broad choice of engineering-related courses with special emphasis on applications in biomedical engineering.

Students have the opportunity to carry out a research project (semester project, 8 ECTS) in one of the laboratories participating in the programme. This Minor can be taken in addition to one of the following programmes:

- Mechanical Engineering
- Microengineering
- Materials Science and Engineering
- Electrical and Electronics Engineering
- Chemistry and Chemical Engineering
- Physics
- Life Sciences
- Civil Engineering

The 30 ECTS credits of the minor are added to the 90 ECTS of the Master (including the 30 ECTS of the Master's thesis) and duly mentioned in the Diploma Supplement.

Le mineur donne l'occasion d'acquérir des notions de bases essentielles en biophysique, biologie cellulaire et physiologie

The program includes **courses** (22 ECTS minimum, <u>all optional</u>) of basis in biomedical sciences as well as a broad choice of engineering-related courses with emphasis on applications in biomedical engineering.

A semester project (8 ECTS, mandatory) related to biomedical technology in included in the Minor.

For non-SV students (STI, SB...)

A core group of courses of biomedical basis is strongly recommended:

BIO-105Cellular biology and biochemistry for engineersPHYS-301Biophysics IMICRO 550Séminaire on physiologie et instrumentation

MICRO-560 Séminaire en physiologie et instrumentation

For SV students

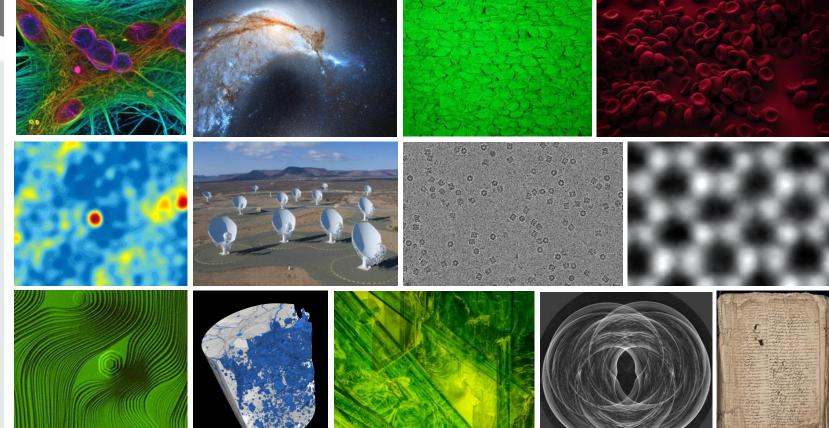
Considering their pre-existing background in biology, SV students can select some other courses from MT, EL, ME, MX programs (up to 10 ECTS, with agreement of the responsible of the Minor program)

DOMAINES D'ACTIVITE DES INGENIEURS « MEDTECH »

Réhabilitation Neuroingénierie Bioingénierie cardiovasculaire Capteurs et instrumentation Traitement des biosignaux Imagerie Bioinformatique Protéomique Télémédecine Biomécanique Robotique chirurgicale BioMEMS Biomatériaux Biotechnologies Génétique Génie tissulaire EPFL microtechnique microtechnique

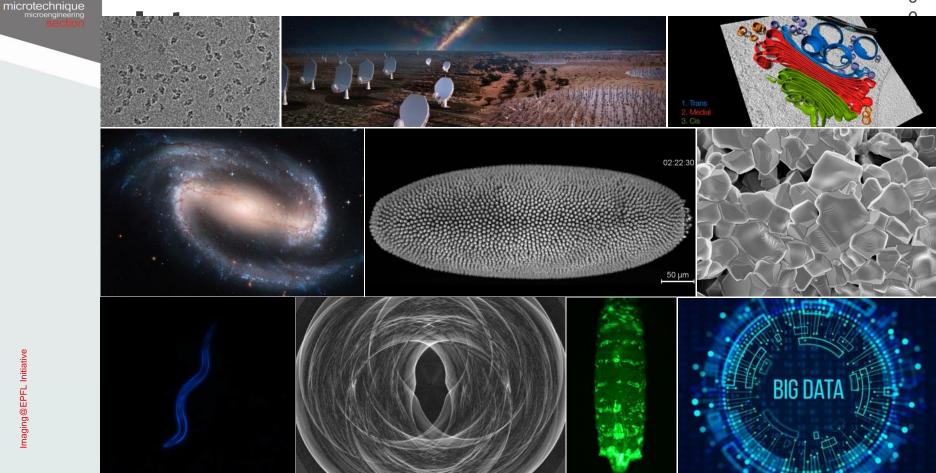
Courseplan

CODE	MATIERES	ENSEIGNANTSsous réserv	N LIVRET DE COURS	REDITSECTSBREPLACES		
					AUT	PRI
Groupe "Mine	lugal			30		
•••••	ire du mineur en Technologies biomédicales			U		
MICRO-563	Project in biomedical technologies	Divers enseignants		8	Α	P
MICRO-363	riger in biomedical technologies	Divers enseignants		•	A	F
Bases biomédi	cales 1)				•	
PHYS-301	Biophysics : physics of the cell	Manley	PH	3		Р
BIO-105	Cellular biology and biochemistry for engineers	Zufferey	IN	4	Α	
BIO-377	Physiologie par systèmes	Roy	SV	4		P
MICRO-568	Seminar in physiology and instrumentation	Radenovic	EL	2	Α	
Autres cours						
PHYS-XXX	MRI Practicals on CIBM preclinical imaging systems	Cudalbu / Lanz	PH	3	A	
NX-XXX	Regulatory, guality and Clinical affairs	Kim Rochat	NX	2	A?	
EE-518	Analog circuits for biochip	Carrara/Schmid/Skrivervik	EL	3	1	P
EE-512	Applied biomedical signal processing	Lemav	EL	4	Α	
EE-519	Bioelectronics and biomedical microelectronics	Schmid	EL	3	A	
BIO-410	Bioimage informatics	Sage/Seitz	SV	4		Р
BIOENG-421	Basics in bioinstrumentation *	Merten	SV	4 18	Α	
NX-465	Computational neurosciences: neuronal dynamics	Gerstner	NX	5	•	Р
ME-481	Biomechanics of the cardiovascular system	Stergiopulos	GM	3		P
ME-482	Biomechanics of the musculoskeletal system	Pioletti	GM	5		Р
BIOENG-445	Biomedical optics	Wagnières G.	SV	3	Α	
MICRO-561	Biomicroscopy I	Altuq	MT	3	Α	
MICRO-562	Biomicroscopy II	Altug+Seitz A.	MT	4		P
EE-517	Bio-nano-chip design	Carrara	EL	3	Α	
PHYS-302	Biophysics : physics of biological systems	Rahi Sahand J.	PH	4	Α	
PHYS-438	Fundamentals of biomedical imaging	Gruetter	PH	4		P
BIO-443	Fundamentals of biophotonics	Radenovic A.	SV	3		Р
EE-515	Fundamentals of biosensors and electronic biochips (pas donné en 2023-	Guiducci	EL	3 70	Α	
MICRO-321(a)	Ingénierie optique (pour MT)	Martin + Achouri/Santschi	MT	6	Α	
MICRO-390	Light, liquids and interfaces	Roke S.	MX	4		Р
ME-480	Mechanobiology: how mechanics regulate life	Persat/Sakar	GM	3	А	
MICRO-331	Microfabrication technologies	Brugger/Gijs/Lacour	MT	4	Α	
CH-413	Nanobiotechnology	Steinauer	CGC	3		P
NX-422	Neural interfaces	Lacour/Shoaran	NX	6	Α	
NX-421	Neural signals and signal processing	Micera/Van De Ville	NX	6	Α	
BIO-482	Neuroscience: cellular and circuit mechanisms	Crochet/Petersen	SV	5	Α	
BIO-491	New tools & research strategies in personalized health	Friedli/Trono + Friedli	SV	4		Р
ME-484	Numerical methods in biomechanics	Terrier A.	GM	3		P
EE-511	Sensors in medical instrumentation	Chétélat/lonescu	EL	3		Р
NX-423	Translational neuroengineering	Blanke/Courtine/Hummel//Mi	NX	6		P


Minor in Imaging

. .

École polytechnique fédérale de Lausanne SIEXCL9



Imaging: from nano to macro

Initiative @EPFL maging

Context

Rich but scattered imaging curriculum

Skills in high demand by industry and academia

Interdisciplinary field par excellence

EPFL: unique concentration of academic strengths


Strategical context

Imaging: a transversal field

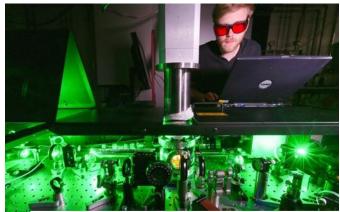
Most of the future progress will likely result from **cross-fertilisation between various disciplines.**

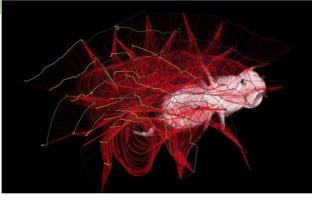
End-users

Data Scientists

Instrumentalists

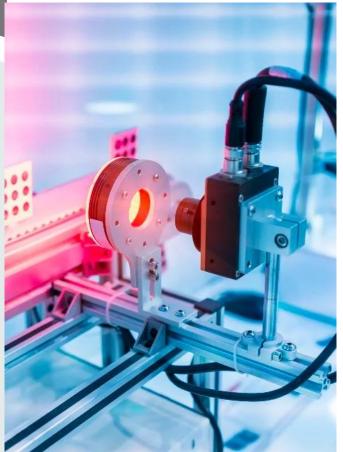
The deep learning revolution, a double-edge sword


- Sophisticated frameworks, often too technical for non-experts
- Computationally demanding: relies on massive GPU resources
- Necessitates a huge amount of data for training
- The number of new algorithms grows by the day
- Need for clear good practice



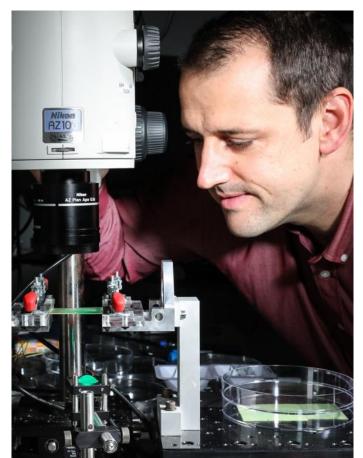
Pedagogical Concept

- Train students with a wide, transversal set of imaging skills.
- Bring greater visibility/coherency to the large offer of imaging-related classes at EPFL.
- Holistic program: From acquisition (optics, physics, sensors, etc.) to computation (image analysis, ML, computer vision, etc)
- Purely theoretical courses to fully applied ones.
- Mostly **application-agnostic**.



4

Interest from (Swiss) Industry

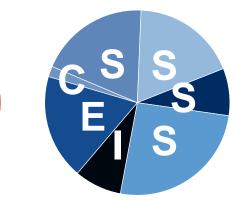


- Interdisciplinary imaging skills are in **increasing demand** from the Swiss industry and the academic world.
- Unanimously-positive feedback from contacted Swiss-based companies.
 - Nestlé CRN, Mikron, Rolex, Siemens Healthinners, NanoLive, etc.
- Wealth of job offers in imaging from major companies with offices in CH.
 - Apple CH, Novartis, Roche, Swatch, Google CH, Sony, etc.

Interest from Academia and Students

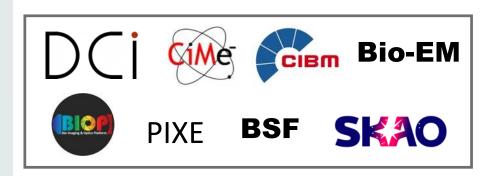
- Multiple positive indicators:
 - Size of the EPFL imaging community (a quarter of the labs).
 - Exploding production of imaging data (in space and time) in research.
 - Very-high demand for continuous training in imaging at the PhD level, across almost all PhD programs.
- Imaging courses are numerous and typically well attended at EPFL.
- Important number of student projects in imaging is proposed every year by labs.

Nurturing advanced imaging at EPFL, across scales and domains



Core Pillars

- 1. Promotion of **interdisciplinary collaborations** in imaging
- 2. Support in image analysis
- **3. Common solutions** for image handling and processing
- 4. Training of students and users
- Created in April 2021
- ~10 employees, 2 scientific hubs



The EPFL landscape in imaging

Imaging Labs at EPFL (Overall)

Imaging Labs per EPFL School

- A fantastic **concentration of academic strengths** in imaging
- Covers all scales and spanning a broad range of applications
- Cutting-edge facilities for image acquisition
- Trained and skilled staff
- Wide array of imaging courses (imaging curriculum)

In Summary

The EPFL Minor in Imaging:

• Holistic program:

- imaging from instrumentation to computation

9

- theoretical and practical aspects
- 25 courses (90ECTS)
- Mostly application-agnostic
- Mandatory (interdisciplinary) student project
- Open to all EPFL Master students
- Strong interest from industry and academia

Courseplan

CODE	MATIERES	ENSEIGNANTSsous réserve de	ENSEIGNANTSsous réserve de RET DECOURREDITSECTS			PERIODE DES COURS	
						AUT	PRI
Groupe "Min	eur"			30			
•	toire du mineur en Imagerie						
MICRO-489	Project in Imaging	Divers enseignants		8		Α	Р
		Differe crice grante					
Bases en ima	agerie						
MATH-xxx	Mathematics of imaging (dès 2024-2025)	Unser/Simeoni/Guizar		3		Α	
	Autres cours						
	Instrumentation and Optics	İ					•••••••
MSE-450	Electron microscopy: advanced methods	Alexander	MX	3			Р
BIO-443	Fundamentals of biophotonics	Radenovic	SV	3			Р
MICRO-421	Computational Optical Imaging	Psaltis	MT	3			P
MICRO-428	Metrology	Bruschini/Charbon/Fantner	MT	3			Р
MICRO-429	Metrology practicals	Bruschini/Charbon/Fantner	MT	2			Р
MICRO-523	Optical detectors	Bruschini	MT	3		Α	
	Image Processing and Analysis						
CS-413	Computational photography	Süsstrunk	IN	6			Р
CS-442	Computer vision	Fua	IN	6			Р
MICRO-573	Deep learning for optical imaging	Psaltis	MT	3			Р
EE-451	Image analysis and pattern recognition	Bozorgtabar/Thiran	EL	4			Р
MICRO-511	Image processing I	Unser/Van de Ville	MT	3		Α	•
MICRO-512	Image processing II	Liebling/Sage/Unser/Van de Ville	MT	3			Р
EE-490(f)	Lab in signal and image processing	Thiran	EL	4			Р
COM-514	Mathematical foundations of signal processing	Fageot/Simeoni	SC	6		Α	•
CS-503	Visual intelligence : machines and minds	Zamir	IN	6			Р
	Application-Specific Courses						
BIO-410	Bioimage informatics	Sage/Seitz	SV	4			Р
MICRO-561	Biomicroscopy I	Altug	MT	3		Α	
MICRO-562	Biomicroscopy II	Altug/Seitz	MT	4			Р
PHYS-438	Fundamentals of biomedical imaging	Gruetter	PH	4			Р
ENV-540	Image processing for Earth observation	Tuia	SIE	4		Α	
NX-421	Neural signals and signal processing	Micera/Van De Ville	NX	6		Α	
CIVIL-510	Quantitative imaging for engineers	Andò	GC	3		Α	
ENV-408	Sensing and spatial modeling for earth observation	Berne/Skaloud/Tuia	SIE	5			Р
PHYS-XXX	MRI Practicals on CIBM preclinical imaging systems	Cudalbu / Lanz	PH	3		Α	

 Faculté des Sciences et Techniques de l'Ingénieur (STI)

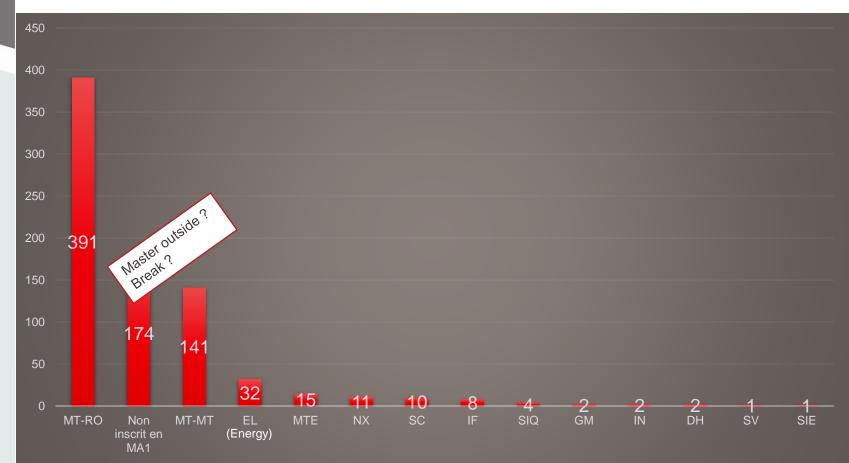
Beyond your studies

MAKE Projects: Fantastic team effort

Entrepreneurship!

Student Startup Launchpad

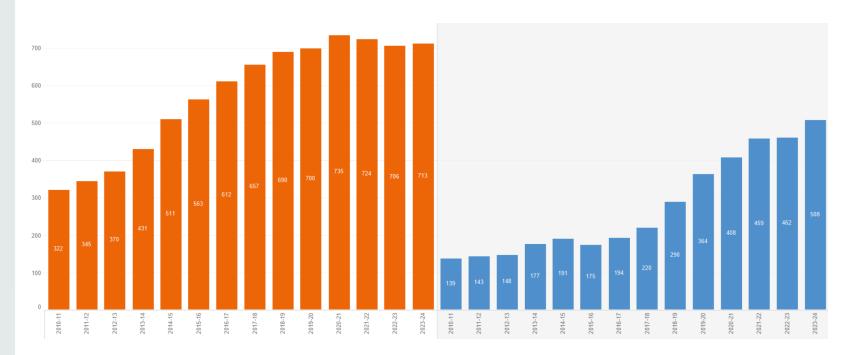
We foster student entrepreneurship as a driver for leadership, impact and innovation. We are building the next generation of students founders with a drive for excellence, an instinct for leadership and an aspiration for societal impact.


> applications are open blaze startup accelerator The 3-month program for EPFL promising student startups Application deadline Feb. 19 rogram starts in March

go.epfl.ch/blas

Master project in your Startup (PDM)

Master studies after MT Bachelor 2019 - 2023


114

Successful curricula (>1200 students)

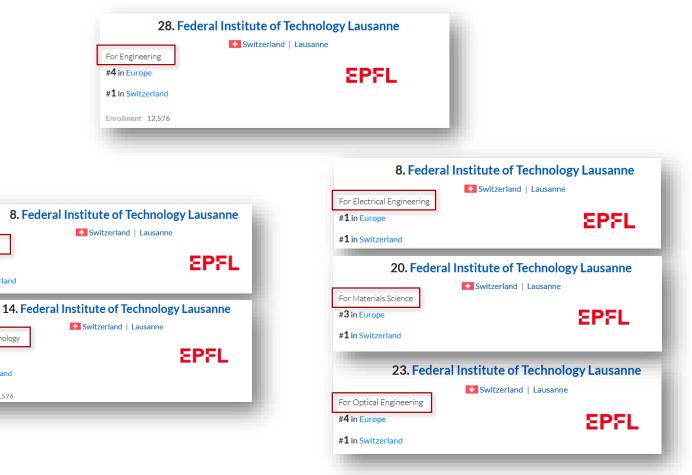

Bachelor

Master Microengineering & Robotics

Gender balance

Worldwide recognition

For Robotics #1 in Europe


#1 in Switzerland

For Nanotechnology #2 in Europe

#1 in Switzerland

Enrollment 12,576

#4 in Europe

Course attendance and online offer

- Take profit as much as possible from presential courses and interact with teachers and assistants
- Follow live recordings only if you have major impediments
- Take profit of the School's infrastructure to be on campus
- Make use of archived recordings to revise, catch-up and strenghten your knowledge
- All teachers look forward to welcome you in class in order to have the best dynamic and pedagogical teaching style possible

Course evaluations

- Each semester, all courses given at EPFL are evaluated by registered students (week 5 and week 14)
- Your productive feedback is essential to help teachers of the section to adapt and improve in a continuouse way their lectures and teaching style.
- Only a high enough participation rate gives representative and useful information
- Your evaluations (and constructive recommendations) have a real impact on teaching

Before contacting the Section ...

Master FAQs

Microenginering

Get in touch with your study advisors

- Advanced Manufacturing : <u>Yves Bellouard</u>
- Micro/nanosystems : <u>Giovanni Boero</u>
- Photonics : <u>Olivier Martin</u>
- Robotics Master and orientations : <u>Francesco Mondada</u>

<u>Minors</u>

- Biomedical Technologies Minor : Philippe Renaud / <u>Carlotta Guiducci</u>
- Photonics Minor : <u>Olivier Martin</u>
- Imaging Minor : <u>Daniel Sage</u>

Industry internship

Industry Internships : <u>Hind Klinke</u>

Infos et bureau de la section MT

Le secrétariat (BM1136) est à votre disposition tous les jours de 8h à 14h non-stop pour les questions administratives :

<u>Isabelle Schafer</u> (assistante administrative)

Pour les questions de **Cursus et plans d'études, merci de prendre rendez-vous avec**

<u>Sebastian Gautsch</u> (adjoint)

Q & A

All the Best for your Master studies !

